Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,21 +9,19 @@ model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
|
|
9 |
processor = LlavaProcessor.from_pretrained(model_id)
|
10 |
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
|
11 |
|
12 |
-
# Initialize inference client
|
13 |
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
14 |
|
15 |
-
# Functions
|
16 |
def llava(inputs, history):
|
17 |
-
"""Processes image + text input
|
18 |
image = Image.open(inputs["files"][0]).convert("RGB")
|
19 |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
20 |
processed = processor(prompt, image, return_tensors="pt").to("cpu")
|
21 |
return processed
|
22 |
|
23 |
def respond(message, history):
|
24 |
-
"""Generate a response
|
25 |
if "files" in message and message["files"]:
|
26 |
-
# Handle image + text input
|
27 |
inputs = llava(message, history)
|
28 |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
29 |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
@@ -33,56 +31,44 @@ def respond(message, history):
|
|
33 |
buffer += new_text
|
34 |
yield buffer
|
35 |
else:
|
36 |
-
# Handle text input
|
37 |
user_message = message["text"]
|
38 |
-
history.append([user_message, None])
|
39 |
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
|
40 |
response = client_gemma.chat_completion(prompt, max_tokens=200)
|
41 |
bot_message = response["choices"][0]["message"]["content"]
|
42 |
-
history[-1][1] = bot_message
|
43 |
yield history
|
44 |
|
45 |
def generate_image(prompt):
|
46 |
-
"""Generates an image
|
47 |
client = InferenceClient("KingNish/Image-Gen-Pro")
|
48 |
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
|
49 |
|
50 |
-
# Gradio app setup
|
51 |
-
with gr.Blocks(title="AI Chat & Tools"
|
52 |
-
with gr.
|
53 |
-
gr.
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
with gr.Row():
|
61 |
-
text_input = gr.Textbox(placeholder="Enter your message...", lines=2, show_label=False)
|
62 |
-
file_input = gr.File(label="Upload an image", file_types=["image/*"])
|
63 |
-
|
64 |
-
def handle_text(text, history=[]):
|
65 |
-
"""Handle text input."""
|
66 |
-
return respond({"text": text}, history), history
|
67 |
-
|
68 |
-
def handle_file(files, history=[]):
|
69 |
-
"""Handle file upload."""
|
70 |
-
return respond({"files": files, "text": "Describe this image."}, history), history
|
71 |
-
|
72 |
-
# Connect callbacks
|
73 |
-
text_input.submit(handle_text, [text_input, chatbot], [chatbot])
|
74 |
-
file_input.change(handle_file, [file_input, chatbot], [chatbot])
|
75 |
-
|
76 |
-
with gr.Page("image", title="Generate Image"):
|
77 |
-
gr.Markdown("### Image Generator")
|
78 |
-
image_prompt = gr.Textbox(placeholder="Describe the image to generate", show_label=False)
|
79 |
-
image_output = gr.Image(label="Generated Image")
|
80 |
-
|
81 |
-
def generate_image_callback(prompt):
|
82 |
-
"""Handle image generation."""
|
83 |
-
return generate_image(prompt)
|
84 |
-
|
85 |
-
image_prompt.submit(generate_image_callback, [image_prompt], [image_output])
|
86 |
-
|
87 |
-
# Launch Gradio app
|
88 |
-
demo.launch()
|
|
|
9 |
processor = LlavaProcessor.from_pretrained(model_id)
|
10 |
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
|
11 |
|
|
|
12 |
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
13 |
|
14 |
+
# Functions for chat and image handling
|
15 |
def llava(inputs, history):
|
16 |
+
"""Processes image + text input with Llava."""
|
17 |
image = Image.open(inputs["files"][0]).convert("RGB")
|
18 |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
19 |
processed = processor(prompt, image, return_tensors="pt").to("cpu")
|
20 |
return processed
|
21 |
|
22 |
def respond(message, history):
|
23 |
+
"""Generate a response based on input."""
|
24 |
if "files" in message and message["files"]:
|
|
|
25 |
inputs = llava(message, history)
|
26 |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
27 |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
|
|
31 |
buffer += new_text
|
32 |
yield buffer
|
33 |
else:
|
|
|
34 |
user_message = message["text"]
|
35 |
+
history.append([user_message, None])
|
36 |
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
|
37 |
response = client_gemma.chat_completion(prompt, max_tokens=200)
|
38 |
bot_message = response["choices"][0]["message"]["content"]
|
39 |
+
history[-1][1] = bot_message
|
40 |
yield history
|
41 |
|
42 |
def generate_image(prompt):
|
43 |
+
"""Generates an image."""
|
44 |
client = InferenceClient("KingNish/Image-Gen-Pro")
|
45 |
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
|
46 |
|
47 |
+
# Gradio app setup
|
48 |
+
with gr.Blocks(title="AI Chat & Tools") as demo:
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column(scale=1, min_width=200):
|
51 |
+
gr.Markdown("## Navigation")
|
52 |
+
gr.Button("Chat Interface").click(None, [], [], _js="() => window.location.hash='#chat'")
|
53 |
+
gr.Button("Image Generation").click(None, [], [], _js="() => window.location.hash='#image'")
|
54 |
+
|
55 |
+
with gr.Column(scale=3):
|
56 |
+
with gr.Page("chat"):
|
57 |
+
gr.Markdown("## Chat with AI Assistant")
|
58 |
+
chatbot = gr.Chatbot(label="Chat", show_label=False)
|
59 |
+
with gr.Row():
|
60 |
+
text_input = gr.Textbox(placeholder="Enter your message...", lines=2, show_label=False)
|
61 |
+
file_input = gr.File(label="Upload an image", file_types=["image/*"])
|
62 |
+
|
63 |
+
text_input.submit(respond, [text_input, chatbot], [chatbot])
|
64 |
+
file_input.change(respond, [file_input, chatbot], [chatbot])
|
65 |
+
|
66 |
+
with gr.Page("image"):
|
67 |
+
gr.Markdown("## Image Generator")
|
68 |
+
image_prompt = gr.Textbox(placeholder="Describe the image to generate", show_label=False)
|
69 |
+
image_output = gr.Image(label="Generated Image")
|
70 |
+
|
71 |
+
image_prompt.submit(generate_image, [image_prompt], [image_output])
|
72 |
|
73 |
+
# Launch the app
|
74 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|