TuringsSolutions commited on
Commit
2cb303a
·
verified ·
1 Parent(s): 72073e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -29
app.py CHANGED
@@ -9,18 +9,19 @@ model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
9
  processor = LlavaProcessor.from_pretrained(model_id)
10
  model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
11
 
12
- # Initialize inference clients
13
  client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
14
 
 
15
  def llava(inputs, history):
16
- """Processes an image and text input using Llava."""
17
  image = Image.open(inputs["files"][0]).convert("RGB")
18
  prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
19
  processed = processor(prompt, image, return_tensors="pt").to("cpu")
20
  return processed
21
 
22
  def respond(message, history):
23
- """Generate a response based on text or image input."""
24
  if "files" in message and message["files"]:
25
  # Handle image + text input
26
  inputs = llava(message, history)
@@ -32,45 +33,56 @@ def respond(message, history):
32
  buffer += new_text
33
  yield buffer
34
  else:
35
- # Handle text-only input
36
  user_message = message["text"]
37
  history.append([user_message, None]) # Append user message to history
38
-
39
- # Prepare prompt for the language model
40
  prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
41
  response = client_gemma.chat_completion(prompt, max_tokens=200)
42
-
43
- # Extract response and update history
44
  bot_message = response["choices"][0]["message"]["content"]
45
- history[-1][1] = bot_message # Update the last entry with bot's response
46
  yield history
47
 
48
  def generate_image(prompt):
49
- """Generates an image based on the user prompt."""
50
  client = InferenceClient("KingNish/Image-Gen-Pro")
51
  return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
52
 
53
- # Set up Gradio interface
54
- with gr.Blocks() as demo:
55
- chatbot = gr.Chatbot()
56
- with gr.Row():
57
- with gr.Column():
58
- text_input = gr.Textbox(placeholder="Enter your message...")
59
- file_input = gr.File(label="Upload an image")
60
- with gr.Column():
61
- output = gr.Image(label="Generated Image")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- def handle_text(text, history=[]):
64
- """Handle text input and generate responses."""
65
- return respond({"text": text}, history), history
 
66
 
67
- def handle_file_upload(files, history=[]):
68
- """Handle file uploads and generate responses."""
69
- return respond({"files": files, "text": "Describe this image."}, history), history
70
 
71
- # Connect components to callbacks
72
- text_input.submit(handle_text, [text_input, chatbot], [chatbot])
73
- file_input.change(handle_file_upload, [file_input, chatbot], [chatbot])
74
 
75
- # Launch the Gradio app
76
  demo.launch()
 
9
  processor = LlavaProcessor.from_pretrained(model_id)
10
  model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
11
 
12
+ # Initialize inference client
13
  client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
14
 
15
+ # Functions
16
  def llava(inputs, history):
17
+ """Processes image + text input using Llava."""
18
  image = Image.open(inputs["files"][0]).convert("RGB")
19
  prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
20
  processed = processor(prompt, image, return_tensors="pt").to("cpu")
21
  return processed
22
 
23
  def respond(message, history):
24
+ """Generate a response for text or image input."""
25
  if "files" in message and message["files"]:
26
  # Handle image + text input
27
  inputs = llava(message, history)
 
33
  buffer += new_text
34
  yield buffer
35
  else:
36
+ # Handle text input
37
  user_message = message["text"]
38
  history.append([user_message, None]) # Append user message to history
 
 
39
  prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
40
  response = client_gemma.chat_completion(prompt, max_tokens=200)
 
 
41
  bot_message = response["choices"][0]["message"]["content"]
42
+ history[-1][1] = bot_message # Update history with bot's response
43
  yield history
44
 
45
  def generate_image(prompt):
46
+ """Generates an image based on user prompt."""
47
  client = InferenceClient("KingNish/Image-Gen-Pro")
48
  return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
49
 
50
+ # Gradio app setup with multi-page and sidebar
51
+ with gr.Blocks(title="AI Chat & Tools", theme="compact") as demo:
52
+ with gr.Sidebar():
53
+ gr.Markdown("## AI Assistant Sidebar")
54
+ gr.Markdown("Navigate through features and try them out.")
55
+ gr.Button("Open Chat").click(None, [], [], _js="() => window.location.hash='#chat'")
56
+ gr.Button("Generate Image").click(None, [], [], _js="() => window.location.hash='#image'")
57
+
58
+ with gr.Page("chat", title="Chat Interface"):
59
+ chatbot = gr.Chatbot(label="Chat with AI Assistant", show_label=False)
60
+ with gr.Row():
61
+ text_input = gr.Textbox(placeholder="Enter your message...", lines=2, show_label=False)
62
+ file_input = gr.File(label="Upload an image", file_types=["image/*"])
63
+
64
+ def handle_text(text, history=[]):
65
+ """Handle text input."""
66
+ return respond({"text": text}, history), history
67
+
68
+ def handle_file(files, history=[]):
69
+ """Handle file upload."""
70
+ return respond({"files": files, "text": "Describe this image."}, history), history
71
+
72
+ # Connect callbacks
73
+ text_input.submit(handle_text, [text_input, chatbot], [chatbot])
74
+ file_input.change(handle_file, [file_input, chatbot], [chatbot])
75
 
76
+ with gr.Page("image", title="Generate Image"):
77
+ gr.Markdown("### Image Generator")
78
+ image_prompt = gr.Textbox(placeholder="Describe the image to generate", show_label=False)
79
+ image_output = gr.Image(label="Generated Image")
80
 
81
+ def generate_image_callback(prompt):
82
+ """Handle image generation."""
83
+ return generate_image(prompt)
84
 
85
+ image_prompt.submit(generate_image_callback, [image_prompt], [image_output])
 
 
86
 
87
+ # Launch Gradio app
88
  demo.launch()