File size: 2,272 Bytes
fc9d5c1
 
602bdb4
fc9d5c1
9bd34af
d54f001
fc9d5c1
 
 
 
 
 
 
 
 
 
9eca625
21cc39d
0ad6252
 
 
 
602bdb4
fc9d5c1
 
602bdb4
 
fc9d5c1
 
49c8dfd
602bdb4
fc9d5c1
 
 
 
 
59a1ae2
fc9d5c1
 
9bd34af
 
 
9eca625
d54f001
 
 
 
 
 
 
 
 
fc9d5c1
 
 
 
 
 
49c8dfd
 
 
602bdb4
49c8dfd
fc9d5c1
 
 
 
21cc39d
49c8dfd
 
3faa322
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
import pandas as pd
from neuralprophet import NeuralProphet
import warnings
import torch.optim as optim
from torch.optim.lr_scheduler import OneCycleLR

warnings.filterwarnings("ignore", category=UserWarning)

url = "VN Index Historical Data.csv"
df = pd.read_csv(url)
df = df[["Date", "Price"]]
df = df.rename(columns={"Date": "ds", "Price": "y"})
df.fillna(method='ffill', inplace=True)
df.dropna(inplace=True)


class CustomNeuralProphet(NeuralProphet):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.optimizer = None

m = CustomNeuralProphet(
    n_forecasts=30,
    n_lags=12,
    changepoints_range=1,
    num_hidden_layers=3,
    yearly_seasonality=True,
    n_changepoints=150,
    trend_reg_threshold=False,
    d_hidden=3,
    global_normalization=True,
    seasonality_reg=1,
    unknown_data_normalization=True,
    seasonality_mode="multiplicative",
    drop_missing=True,
    learning_rate=0.03,
)

# Set the custom LR scheduler
m.fit(df, freq='D')  # Fit the model first before accessing the optimizer
m.optimizer = optim.Adam(m.model.parameters(), lr=0.03)  # Example optimizer, adjust as needed

lr_scheduler = OneCycleLR(
    m.optimizer,
    max_lr=0.1,
    total_steps=100,
    pct_start=0.3,
    anneal_strategy='cos',
)  # Example LR scheduler, adjust as needed

m.trainer.lr_schedulers = [lr_scheduler]  # Set the LR scheduler to the trainer

future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
forecast = m.predict(future)


def predict_vn_index(option=None):
    fig = m.plot(forecast)
    path = "forecast_plot.png"
    fig.savefig(path)
    disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách."
    return path, disclaimer


if __name__ == "__main__":
    dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex")
    image_output = gr.outputs.Image(type="file", label="Forecast Plot")
    disclaimer_output = gr.outputs.Textbox(label="Disclaimer")
    interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=[image_output, disclaimer_output], title="Dự báo VN Index 30 ngày tới")
    interface.launch()