Spaces:
Sleeping
Sleeping
Commit
·
d54f001
1
Parent(s):
9bd34af
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
from neuralprophet import NeuralProphet
|
4 |
import warnings
|
5 |
import torch.optim as optim
|
6 |
-
from torch.optim.lr_scheduler import
|
7 |
|
8 |
warnings.filterwarnings("ignore", category=UserWarning)
|
9 |
|
@@ -20,11 +20,6 @@ class CustomNeuralProphet(NeuralProphet):
|
|
20 |
super().__init__(**kwargs)
|
21 |
self.optimizer = None
|
22 |
|
23 |
-
def lr_scheduler_step(self, epoch, batch_idx, optimizer):
|
24 |
-
# Custom logic for LR scheduler step
|
25 |
-
for lr_scheduler in optimizer.param_groups[0]['lr_scheduler']:
|
26 |
-
lr_scheduler.step()
|
27 |
-
|
28 |
m = CustomNeuralProphet(
|
29 |
n_forecasts=30,
|
30 |
n_lags=12,
|
@@ -46,8 +41,15 @@ m = CustomNeuralProphet(
|
|
46 |
m.fit(df, freq='D') # Fit the model first before accessing the optimizer
|
47 |
m.optimizer = optim.Adam(m.model.parameters(), lr=0.03) # Example optimizer, adjust as needed
|
48 |
|
49 |
-
lr_scheduler =
|
50 |
-
m.optimizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
|
53 |
forecast = m.predict(future)
|
@@ -67,11 +69,3 @@ if __name__ == "__main__":
|
|
67 |
disclaimer_output = gr.outputs.Textbox(label="Disclaimer")
|
68 |
interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=[image_output, disclaimer_output], title="Dự báo VN Index 30 ngày tới")
|
69 |
interface.launch()
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
3 |
from neuralprophet import NeuralProphet
|
4 |
import warnings
|
5 |
import torch.optim as optim
|
6 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
7 |
|
8 |
warnings.filterwarnings("ignore", category=UserWarning)
|
9 |
|
|
|
20 |
super().__init__(**kwargs)
|
21 |
self.optimizer = None
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
m = CustomNeuralProphet(
|
24 |
n_forecasts=30,
|
25 |
n_lags=12,
|
|
|
41 |
m.fit(df, freq='D') # Fit the model first before accessing the optimizer
|
42 |
m.optimizer = optim.Adam(m.model.parameters(), lr=0.03) # Example optimizer, adjust as needed
|
43 |
|
44 |
+
lr_scheduler = OneCycleLR(
|
45 |
+
m.optimizer,
|
46 |
+
max_lr=0.1,
|
47 |
+
total_steps=100,
|
48 |
+
pct_start=0.3,
|
49 |
+
anneal_strategy='cos',
|
50 |
+
) # Example LR scheduler, adjust as needed
|
51 |
+
|
52 |
+
m.trainer.lr_schedulers = [lr_scheduler] # Set the LR scheduler to the trainer
|
53 |
|
54 |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
|
55 |
forecast = m.predict(future)
|
|
|
69 |
disclaimer_output = gr.outputs.Textbox(label="Disclaimer")
|
70 |
interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=[image_output, disclaimer_output], title="Dự báo VN Index 30 ngày tới")
|
71 |
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|