Spaces:
Sleeping
Sleeping
Commit
·
9bd34af
1
Parent(s):
b673837
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,8 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
from neuralprophet import NeuralProphet
|
4 |
import warnings
|
5 |
-
|
|
|
6 |
|
7 |
warnings.filterwarnings("ignore", category=UserWarning)
|
8 |
|
@@ -20,12 +21,9 @@ class CustomNeuralProphet(NeuralProphet):
|
|
20 |
self.optimizer = None
|
21 |
|
22 |
def lr_scheduler_step(self, epoch, batch_idx, optimizer):
|
23 |
-
# Custom logic for
|
24 |
-
for
|
25 |
-
|
26 |
-
lr_scheduler = param_group["lr_scheduler"]
|
27 |
-
lr_scheduler.step()
|
28 |
-
|
29 |
|
30 |
m = CustomNeuralProphet(
|
31 |
n_forecasts=30,
|
@@ -44,8 +42,12 @@ m = CustomNeuralProphet(
|
|
44 |
learning_rate=0.03,
|
45 |
)
|
46 |
|
|
|
|
|
|
|
47 |
|
48 |
-
m.
|
|
|
49 |
|
50 |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
|
51 |
forecast = m.predict(future)
|
@@ -72,3 +74,4 @@ if __name__ == "__main__":
|
|
72 |
|
73 |
|
74 |
|
|
|
|
2 |
import pandas as pd
|
3 |
from neuralprophet import NeuralProphet
|
4 |
import warnings
|
5 |
+
import torch.optim as optim
|
6 |
+
from torch.optim.lr_scheduler import LambdaLR
|
7 |
|
8 |
warnings.filterwarnings("ignore", category=UserWarning)
|
9 |
|
|
|
21 |
self.optimizer = None
|
22 |
|
23 |
def lr_scheduler_step(self, epoch, batch_idx, optimizer):
|
24 |
+
# Custom logic for LR scheduler step
|
25 |
+
for lr_scheduler in optimizer.param_groups[0]['lr_scheduler']:
|
26 |
+
lr_scheduler.step()
|
|
|
|
|
|
|
27 |
|
28 |
m = CustomNeuralProphet(
|
29 |
n_forecasts=30,
|
|
|
42 |
learning_rate=0.03,
|
43 |
)
|
44 |
|
45 |
+
# Set the custom LR scheduler
|
46 |
+
m.fit(df, freq='D') # Fit the model first before accessing the optimizer
|
47 |
+
m.optimizer = optim.Adam(m.model.parameters(), lr=0.03) # Example optimizer, adjust as needed
|
48 |
|
49 |
+
lr_scheduler = LambdaLR(m.optimizer, lambda epoch: 0.95 ** epoch) # Example LR scheduler, adjust as needed
|
50 |
+
m.optimizer.param_groups[0]['lr_scheduler'] = [lr_scheduler]
|
51 |
|
52 |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
|
53 |
forecast = m.predict(future)
|
|
|
74 |
|
75 |
|
76 |
|
77 |
+
|