Spaces:
Sleeping
Sleeping
Commit
·
602bdb4
1
Parent(s):
44862d1
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
from neuralprophet import NeuralProphet
|
4 |
import io
|
5 |
import warnings
|
6 |
-
import
|
7 |
|
8 |
warnings.filterwarnings("ignore", category=UserWarning)
|
9 |
|
10 |
-
set_log_level("ERROR")
|
11 |
-
|
12 |
url = "VN Index Historical Data.csv"
|
13 |
df = pd.read_csv(url)
|
14 |
df = df[["Date", "Price"]]
|
@@ -16,24 +14,30 @@ df = df.rename(columns={"Date": "ds", "Price": "y"})
|
|
16 |
df.fillna(method='ffill', inplace=True)
|
17 |
df.dropna(inplace=True)
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
n_forecasts=30,
|
21 |
n_lags=12,
|
22 |
-
changepoints_range=
|
23 |
-
num_hidden_layers=
|
24 |
yearly_seasonality=True,
|
25 |
n_changepoints=150,
|
26 |
trend_reg_threshold=False, # Disable trend regularization threshold
|
27 |
-
d_hidden=
|
28 |
global_normalization=True,
|
29 |
seasonality_reg=1,
|
30 |
unknown_data_normalization=True,
|
31 |
seasonality_mode="multiplicative",
|
32 |
drop_missing=True,
|
33 |
-
learning_rate=0.1
|
34 |
)
|
35 |
|
36 |
-
m.fit(df, freq='D')
|
37 |
|
38 |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
|
39 |
forecast = m.predict(future)
|
@@ -43,13 +47,17 @@ def predict_vn_index(option=None):
|
|
43 |
fig = m.plot(forecast)
|
44 |
path = "forecast_plot.png"
|
45 |
fig.savefig(path)
|
46 |
-
|
|
|
47 |
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex")
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
|
54 |
|
55 |
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
from neuralprophet import NeuralProphet
|
4 |
import io
|
5 |
import warnings
|
6 |
+
import torch
|
7 |
|
8 |
warnings.filterwarnings("ignore", category=UserWarning)
|
9 |
|
|
|
|
|
10 |
url = "VN Index Historical Data.csv"
|
11 |
df = pd.read_csv(url)
|
12 |
df = df[["Date", "Price"]]
|
|
|
14 |
df.fillna(method='ffill', inplace=True)
|
15 |
df.dropna(inplace=True)
|
16 |
|
17 |
+
class CustomNeuralProphet(NeuralProphet):
|
18 |
+
def lr_scheduler_step(self, epoch: int = None) -> None:
|
19 |
+
# Override the lr_scheduler_step method to avoid the MisconfigurationException
|
20 |
+
if self.lr_scheduler is not None and isinstance(self.lr_scheduler, torch.optim.lr_scheduler.OneCycleLR):
|
21 |
+
self.lr_scheduler.step()
|
22 |
+
|
23 |
+
m = CustomNeuralProphet(
|
24 |
n_forecasts=30,
|
25 |
n_lags=12,
|
26 |
+
changepoints_range=1,
|
27 |
+
num_hidden_layers=3,
|
28 |
yearly_seasonality=True,
|
29 |
n_changepoints=150,
|
30 |
trend_reg_threshold=False, # Disable trend regularization threshold
|
31 |
+
d_hidden=3,
|
32 |
global_normalization=True,
|
33 |
seasonality_reg=1,
|
34 |
unknown_data_normalization=True,
|
35 |
seasonality_mode="multiplicative",
|
36 |
drop_missing=True,
|
37 |
+
learning_rate=0.1,
|
38 |
)
|
39 |
|
40 |
+
m.fit(df, freq='D', epochs=10, validate_each_epoch=True, valid_p=0.2) # Specify number of epochs and validation parameters
|
41 |
|
42 |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
|
43 |
forecast = m.predict(future)
|
|
|
47 |
fig = m.plot(forecast)
|
48 |
path = "forecast_plot.png"
|
49 |
fig.savefig(path)
|
50 |
+
disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách."
|
51 |
+
return path, disclaimer
|
52 |
|
53 |
|
54 |
if __name__ == "__main__":
|
55 |
dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex")
|
56 |
+
image_output = gr.outputs.Image(type="file", label="Forecast Plot")
|
57 |
+
disclaimer_output = gr.outputs.Textbox(label="Disclaimer")
|
58 |
+
interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=[image_output, disclaimer_output], title="Dự báo VN Index 30 ngày tới")
|
59 |
+
interface.launch(share=True)
|
60 |
+
|
61 |
|
62 |
|
63 |
|