Spaces:
Sleeping
Sleeping
File size: 8,528 Bytes
e6d07cd 4d6e8c2 4477f42 4d6e8c2 e6d07cd ece5856 45a2367 21262c6 4d6e8c2 1a885c6 4d6e8c2 21262c6 bc4f464 21262c6 e6d07cd e33fed0 4d6e8c2 45a2367 1c33274 de4e4d7 70f5f26 e6d07cd 4477f42 e6d07cd 7abed63 e6d07cd 45a2367 30f3a06 45a2367 0c9dbe5 822db29 30f3a06 45a2367 a036e74 45a2367 a036e74 45a2367 822db29 e6d07cd 7abed63 e6d07cd 7abed63 e6d07cd 45a2367 e6d07cd 7eb6153 45a2367 a036e74 7eb6153 4477f42 4d6e8c2 4477f42 e6d07cd 85c5204 e6d07cd 6f0e9af 08f1c39 dc058e1 6f0e9af 85c5204 ada5a12 bc4f464 6f0e9af f3f30d7 6f0e9af 08f1c39 dc058e1 6f0e9af 08f1c39 dc058e1 6f0e9af e6d07cd 6f0e9af 85c5204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from fastapi import APIRouter
from datetime import datetime
import time
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Tuple
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from huggingface_hub import login
from dotenv import load_dotenv
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
# Load environment variables
load_dotenv()
# Authenticate with Hugging Face
HF_TOKEN = os.getenv('HUGGINGFACE_TOKEN')
if HF_TOKEN:
login(token=HF_TOKEN)
# Disable torch compile
os.environ["TORCH_COMPILE_DISABLE"] = "1"
router = APIRouter()
DESCRIPTION = "ModernBERT fine-tuned for climate disinformation detection"
ROUTE = "/text"
MODEL_NAME = "Tonic/climate-guard-toxic-agent"
class TextClassifier:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
max_retries = 3
for attempt in range(max_retries):
try:
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
model_max_length=512,
padding_side='right',
truncation_side='right'
)
# Initialize model with specific configuration
self.model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME,
num_labels=8,
problem_type="single_label_classification"
)
# Move model to appropriate device
self.model = self.model.to(self.device)
# Initialize pipeline with the model and tokenizer
self.classifier = pipeline(
"text-classification",
model=self.model,
tokenizer=self.tokenizer,
device=self.device,
max_length=512,
truncation=True,
batch_size=16
)
print("Model initialized successfully")
break
except Exception as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to initialize model after {max_retries} attempts: {str(e)}")
print(f"Attempt {attempt + 1} failed, retrying... Error: {str(e)}")
time.sleep(1)
def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]:
"""Process a batch of texts and return their predictions"""
max_retries = 3
for attempt in range(max_retries):
try:
print(f"Processing batch {batch_idx} with {len(batch)} items")
# Process texts with error handling
predictions = []
for text in batch:
try:
result = self.classifier(text)
pred_label = int(result[0]['label'].split('_')[0])
predictions.append(pred_label)
except Exception as e:
print(f"Error processing text in batch {batch_idx}: {str(e)}")
predictions.append(0) # Default prediction
print(f"Completed batch {batch_idx} with {len(predictions)} predictions")
return predictions, batch_idx
except Exception as e:
if attempt == max_retries - 1:
print(f"Final error in batch {batch_idx}: {str(e)}")
return [0] * len(batch), batch_idx
print(f"Error in batch {batch_idx} (attempt {attempt + 1}): {str(e)}")
time.sleep(1)
def __del__(self):
# Clean up CUDA memory
if hasattr(self, 'model'):
del self.model
if hasattr(self, 'classifier'):
del self.classifier
if torch.cuda.is_available():
torch.cuda.empty_cache()
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""Evaluate text classification for climate disinformation detection."""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
try:
# Load and prepare the dataset
dataset = load_dataset("QuotaClimat/frugalaichallenge-text-train", token=HF_TOKEN)
# Convert string labels to integers with error handling
def convert_label(example):
try:
return {"label": LABEL_MAPPING[example["label"]]}
except KeyError as e:
print(f"Warning: Unknown label {example['label']}")
# Return default label or raise exception
return {"label": 0} # or raise e if you want to fail on unknown labels
dataset = dataset.map(convert_label)
# Split dataset
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
true_labels = test_dataset["label"]
# Initialize the model once
classifier = TextClassifier()
# Prepare batches
batch_size = 24
quotes = test_dataset["quote"]
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
batches = [
quotes[i * batch_size:(i + 1) * batch_size]
for i in range(num_batches)
]
# Initialize batch_results
batch_results = [[] for _ in range(num_batches)]
# Process batches in parallel
max_workers = min(os.cpu_count(), 4)
print(f"Processing with {max_workers} workers")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_batch = {
executor.submit(classifier.process_batch, batch, idx): idx
for idx, batch in enumerate(batches)
}
for future in future_to_batch:
batch_idx = future_to_batch[future]
try:
predictions, idx = future.result()
if predictions:
batch_results[idx] = predictions
print(f"Stored results for batch {idx} ({len(predictions)} predictions)")
except Exception as e:
print(f"Failed to get results for batch {batch_idx}: {e}")
batch_results[batch_idx] = [0] * len(batches[batch_idx])
# Flatten predictions
predictions = []
for batch_preds in batch_results:
if batch_preds is not None:
predictions.extend(batch_preds)
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
print("accuracy:", accuracy)
# Prepare results
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
print("results:", results)
return results
except Exception as e:
print(f"Error in evaluate_text: {str(e)}")
raise Exception(f"Failed to process request: {str(e)}") |