Spaces:
Sleeping
Sleeping
improve text classifier
Browse files- tasks/text.py +46 -23
tasks/text.py
CHANGED
@@ -7,8 +7,7 @@ import os
|
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
from typing import List, Dict, Tuple
|
9 |
import torch
|
10 |
-
import
|
11 |
-
from transformers import AutoTokenizer, pipeline
|
12 |
from huggingface_hub import login
|
13 |
from dotenv import load_dotenv
|
14 |
|
@@ -28,34 +27,44 @@ os.environ["TORCH_COMPILE_DISABLE"] = "1"
|
|
28 |
|
29 |
router = APIRouter()
|
30 |
|
31 |
-
DESCRIPTION = "
|
32 |
ROUTE = "/text"
|
|
|
33 |
|
34 |
class TextClassifier:
|
35 |
def __init__(self):
|
36 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
max_retries = 3
|
38 |
-
model_name = "Tonic/climate-guard-toxic-agent"
|
39 |
|
40 |
for attempt in range(max_retries):
|
41 |
try:
|
42 |
-
# Initialize tokenizer
|
43 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
44 |
-
|
45 |
-
model_max_length=512,
|
46 |
padding_side='right',
|
47 |
truncation_side='right'
|
48 |
)
|
49 |
|
50 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
self.classifier = pipeline(
|
52 |
"text-classification",
|
53 |
-
model=
|
54 |
tokenizer=self.tokenizer,
|
55 |
device=self.device,
|
56 |
max_length=512,
|
57 |
truncation=True,
|
58 |
-
batch_size=
|
59 |
)
|
60 |
|
61 |
print("Model initialized successfully")
|
@@ -69,22 +78,36 @@ class TextClassifier:
|
|
69 |
|
70 |
def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]:
|
71 |
"""Process a batch of texts and return their predictions"""
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
def __del__(self):
|
87 |
# Clean up CUDA memory
|
|
|
|
|
88 |
if hasattr(self, 'classifier'):
|
89 |
del self.classifier
|
90 |
if torch.cuda.is_available():
|
|
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
from typing import List, Dict, Tuple
|
9 |
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
|
|
11 |
from huggingface_hub import login
|
12 |
from dotenv import load_dotenv
|
13 |
|
|
|
27 |
|
28 |
router = APIRouter()
|
29 |
|
30 |
+
DESCRIPTION = "ModernBERT fine-tuned for climate disinformation detection"
|
31 |
ROUTE = "/text"
|
32 |
+
MODEL_NAME = "answerdotai/ModernBERT-base"
|
33 |
|
34 |
class TextClassifier:
|
35 |
def __init__(self):
|
36 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
max_retries = 3
|
|
|
38 |
|
39 |
for attempt in range(max_retries):
|
40 |
try:
|
41 |
+
# Initialize tokenizer
|
42 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
43 |
+
MODEL_NAME,
|
44 |
+
model_max_length=512,
|
45 |
padding_side='right',
|
46 |
truncation_side='right'
|
47 |
)
|
48 |
|
49 |
+
# Initialize model with specific configuration
|
50 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
51 |
+
MODEL_NAME,
|
52 |
+
num_labels=8,
|
53 |
+
problem_type="single_label_classification"
|
54 |
+
)
|
55 |
+
|
56 |
+
# Move model to appropriate device
|
57 |
+
self.model = self.model.to(self.device)
|
58 |
+
|
59 |
+
# Initialize pipeline with the model and tokenizer
|
60 |
self.classifier = pipeline(
|
61 |
"text-classification",
|
62 |
+
model=self.model,
|
63 |
tokenizer=self.tokenizer,
|
64 |
device=self.device,
|
65 |
max_length=512,
|
66 |
truncation=True,
|
67 |
+
batch_size=16
|
68 |
)
|
69 |
|
70 |
print("Model initialized successfully")
|
|
|
78 |
|
79 |
def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]:
|
80 |
"""Process a batch of texts and return their predictions"""
|
81 |
+
max_retries = 3
|
82 |
+
for attempt in range(max_retries):
|
83 |
+
try:
|
84 |
+
print(f"Processing batch {batch_idx} with {len(batch)} items")
|
85 |
+
|
86 |
+
# Process texts with error handling
|
87 |
+
predictions = []
|
88 |
+
for text in batch:
|
89 |
+
try:
|
90 |
+
result = self.classifier(text)
|
91 |
+
pred_label = int(result[0]['label'].split('_')[0])
|
92 |
+
predictions.append(pred_label)
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Error processing text in batch {batch_idx}: {str(e)}")
|
95 |
+
predictions.append(0) # Default prediction
|
96 |
+
|
97 |
+
print(f"Completed batch {batch_idx} with {len(predictions)} predictions")
|
98 |
+
return predictions, batch_idx
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
if attempt == max_retries - 1:
|
102 |
+
print(f"Final error in batch {batch_idx}: {str(e)}")
|
103 |
+
return [0] * len(batch), batch_idx
|
104 |
+
print(f"Error in batch {batch_idx} (attempt {attempt + 1}): {str(e)}")
|
105 |
+
time.sleep(1)
|
106 |
|
107 |
def __del__(self):
|
108 |
# Clean up CUDA memory
|
109 |
+
if hasattr(self, 'model'):
|
110 |
+
del self.model
|
111 |
if hasattr(self, 'classifier'):
|
112 |
del self.classifier
|
113 |
if torch.cuda.is_available():
|