Spaces:
Sleeping
Sleeping
fix model loading error
Browse files- tasks/text.py +33 -10
tasks/text.py
CHANGED
|
@@ -7,7 +7,7 @@ import os
|
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
from typing import List, Dict, Tuple
|
| 9 |
import torch
|
| 10 |
-
from transformers import
|
| 11 |
from huggingface_hub import login
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
|
|
@@ -38,13 +38,26 @@ class TextClassifier:
|
|
| 38 |
|
| 39 |
for attempt in range(max_retries):
|
| 40 |
try:
|
| 41 |
-
#
|
| 42 |
-
self.
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
|
|
|
|
|
|
|
|
|
| 48 |
print("Model initialized successfully")
|
| 49 |
break
|
| 50 |
|
|
@@ -59,9 +72,19 @@ class TextClassifier:
|
|
| 59 |
try:
|
| 60 |
print(f"Processing batch {batch_idx} with {len(batch)} items")
|
| 61 |
|
| 62 |
-
#
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
print(f"Completed batch {batch_idx} with {len(predictions)} predictions")
|
| 67 |
return predictions, batch_idx
|
|
|
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
from typing import List, Dict, Tuple
|
| 9 |
import torch
|
| 10 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
| 11 |
from huggingface_hub import login
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
|
|
|
|
| 38 |
|
| 39 |
for attempt in range(max_retries):
|
| 40 |
try:
|
| 41 |
+
# Load config and modify it to remove bias parameter
|
| 42 |
+
self.config = AutoConfig.from_pretrained(model_name)
|
| 43 |
+
if hasattr(self.config, 'norm_bias'):
|
| 44 |
+
delattr(self.config, 'norm_bias')
|
| 45 |
+
|
| 46 |
+
# Initialize tokenizer
|
| 47 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 48 |
+
model_name,
|
| 49 |
+
model_max_length=2048
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Initialize model with modified config
|
| 53 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 54 |
+
model_name,
|
| 55 |
+
config=self.config,
|
| 56 |
+
ignore_mismatched_sizes=True
|
| 57 |
)
|
| 58 |
+
|
| 59 |
+
self.model.to(self.device)
|
| 60 |
+
self.model.eval()
|
| 61 |
print("Model initialized successfully")
|
| 62 |
break
|
| 63 |
|
|
|
|
| 72 |
try:
|
| 73 |
print(f"Processing batch {batch_idx} with {len(batch)} items")
|
| 74 |
|
| 75 |
+
# Tokenize
|
| 76 |
+
inputs = self.tokenizer(
|
| 77 |
+
batch,
|
| 78 |
+
padding=True,
|
| 79 |
+
truncation=True,
|
| 80 |
+
max_length=2048,
|
| 81 |
+
return_tensors="pt"
|
| 82 |
+
).to(self.device)
|
| 83 |
+
|
| 84 |
+
# Get predictions
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = self.model(**inputs)
|
| 87 |
+
predictions = torch.argmax(outputs.logits, dim=-1).cpu().tolist()
|
| 88 |
|
| 89 |
print(f"Completed batch {batch_idx} with {len(predictions)} predictions")
|
| 90 |
return predictions, batch_idx
|