Spaces:
Sleeping
Sleeping
switch model loading technique
Browse files- tasks/text.py +9 -25
tasks/text.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
import time
|
@@ -134,21 +135,8 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
134 |
}
|
135 |
|
136 |
try:
|
137 |
-
# Load and prepare the dataset
|
138 |
-
|
139 |
-
for attempt in range(max_retries):
|
140 |
-
try:
|
141 |
-
dataset = load_dataset(
|
142 |
-
"QuotaClimat/frugalaichallenge-text-train",
|
143 |
-
token=HF_TOKEN,
|
144 |
-
trust_remote_code=True
|
145 |
-
)
|
146 |
-
break
|
147 |
-
except Exception as e:
|
148 |
-
if attempt == max_retries - 1:
|
149 |
-
raise Exception(f"Failed to load dataset after {max_retries} attempts: {str(e)}")
|
150 |
-
print(f"Dataset loading attempt {attempt + 1} failed, retrying... Error: {str(e)}")
|
151 |
-
time.sleep(2)
|
152 |
|
153 |
# Convert string labels to integers
|
154 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
@@ -165,8 +153,8 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
165 |
# Initialize the model once
|
166 |
classifier = TextClassifier()
|
167 |
|
168 |
-
# Prepare batches
|
169 |
-
batch_size =
|
170 |
quotes = test_dataset["quote"]
|
171 |
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
|
172 |
batches = [
|
@@ -177,8 +165,8 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
177 |
# Initialize batch_results
|
178 |
batch_results = [[] for _ in range(num_batches)]
|
179 |
|
180 |
-
# Process batches in parallel
|
181 |
-
max_workers = min(os.cpu_count(),
|
182 |
print(f"Processing with {max_workers} workers")
|
183 |
|
184 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
@@ -211,11 +199,6 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
211 |
accuracy = accuracy_score(true_labels, predictions)
|
212 |
print("accuracy:", accuracy)
|
213 |
|
214 |
-
# Clean up
|
215 |
-
del classifier
|
216 |
-
if torch.cuda.is_available():
|
217 |
-
torch.cuda.empty_cache()
|
218 |
-
|
219 |
# Prepare results
|
220 |
results = {
|
221 |
"username": username,
|
@@ -239,4 +222,5 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
239 |
|
240 |
except Exception as e:
|
241 |
print(f"Error in evaluate_text: {str(e)}")
|
242 |
-
raise Exception(f"Failed to process request: {str(e)}")
|
|
|
|
1 |
+
|
2 |
from fastapi import APIRouter
|
3 |
from datetime import datetime
|
4 |
import time
|
|
|
135 |
}
|
136 |
|
137 |
try:
|
138 |
+
# Load and prepare the dataset
|
139 |
+
dataset = load_dataset("QuotaClimat/frugalaichallenge-text-train", token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
# Convert string labels to integers
|
142 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
|
|
153 |
# Initialize the model once
|
154 |
classifier = TextClassifier()
|
155 |
|
156 |
+
# Prepare batches
|
157 |
+
batch_size = 24
|
158 |
quotes = test_dataset["quote"]
|
159 |
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
|
160 |
batches = [
|
|
|
165 |
# Initialize batch_results
|
166 |
batch_results = [[] for _ in range(num_batches)]
|
167 |
|
168 |
+
# Process batches in parallel
|
169 |
+
max_workers = min(os.cpu_count(), 4)
|
170 |
print(f"Processing with {max_workers} workers")
|
171 |
|
172 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
|
199 |
accuracy = accuracy_score(true_labels, predictions)
|
200 |
print("accuracy:", accuracy)
|
201 |
|
|
|
|
|
|
|
|
|
|
|
202 |
# Prepare results
|
203 |
results = {
|
204 |
"username": username,
|
|
|
222 |
|
223 |
except Exception as e:
|
224 |
print(f"Error in evaluate_text: {str(e)}")
|
225 |
+
raise Exception(f"Failed to process request: {str(e)}")
|
226 |
+
|