File size: 6,583 Bytes
24a6868 edf7b61 3ada2b6 24a6868 4554617 24a6868 ccacd4d 498164e 287461f 6d6dac5 e986edd 1d2025e 24a6868 fde98ce 24a6868 efe2aab 11453ec 24a6868 fde98ce 6095378 6d6dac5 3887a4a e2d88ba 7e50ae5 e2d88ba 498164e ef6e36a 8718681 927051d ef6e36a 7e50ae5 927051d 69388d5 7de4c3e c7f68b4 0563fad 24a6868 d032c56 35915ac b0abbc2 ef6e36a f4e97ee 8c94298 0563fad 35915ac 8c94298 f531783 b13cec6 f4c9c2f f531783 b13cec6 f4c9c2f 35e9dd4 0656c70 8c94298 1b00a63 7bacb85 b0abbc2 1b00a63 f4c9c2f 8c94298 4ab383e 672253d 4ab383e 672253d 388fff6 cd12320 f97103a b0abbc2 04b7218 d62c968 35915ac 2981d40 24a6868 c6a4957 2981d40 0563fad 2981d40 24a6868 63ddf6d c7f68b4 1d2025e e6b0483 cd12320 6d6dac5 85f70fe fde98ce 85f70fe b416323 24a6868 3389734 7de4c3e 6095378 00acfc9 115e8a4 00acfc9 6095378 35915ac 6095378 45bfc52 7aab969 867e893 e9947e2 6095378 3389734 24a6868 6095378 393c4eb 24a6868 393c4eb 3389734 24a6868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# Imports
import gradio as gr
import threading
import requests
import random
import spaces
import torch
import uuid
import json
import os
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler
from huggingface_hub import snapshot_download
from transformers import pipeline
from peft import PeftModel
from PIL import Image
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
# Variables
HF_TOKEN = os.environ.get("HF_TOKEN")
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_NEGATIVE_INPUT = "(bad, ugly, amputation, abstract, blur, deformed, distorted, disfigured, disconnected, mutation, mutated, low quality, lowres), unfinished, text, signature, watermark, (limbs, legs, feet, arms, hands), (porn, nude, naked, nsfw)"
DEFAULT_MODEL = "Default"
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HF_TOKEN}" }
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
repo_default.set_adapters(["base"], adapter_weights=[0.7])
repo_pixel = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base")
repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2")
repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1])
repo_large_path = snapshot_download(repo_id="stabilityai/stable-diffusion-3-medium", revision="refs/pr/26", token=HF_TOKEN)
repo_large_transformer_path = SD3Transformer2DModel.from_pretrained(repo_large_path, subfolder="transformer", torch_dtype=torch.float16)
repo_large_transformer = PeftModel.from_pretrained(repo_large_transformer_path, "jasperai/flash-sd3")
repo_customs = {
"Default": repo_default,
"Realistic": StableDiffusionXLPipeline.from_pretrained("ehristoforu/Visionix-alpha", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
"Anime": StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
"Pixel": repo_pixel,
"Large": StableDiffusion3Pipeline.from_pretrained(repo_large_path, transformer=repo_large_transformer, torch_dtype=torch.float16, use_safetensors=True),
}
repo_customs["Large"].scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained(repo_large_path, subfolder="scheduler")
# Functions
def save_image(img, seed):
name = f"{seed}-{uuid.uuid4()}.png"
img.save(name)
return name
def get_seed(seed):
seed = seed.strip()
if seed.isdigit():
return int(seed)
else:
return random.randint(0, MAX_SEED)
@spaces.GPU(duration=60)
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
repo = repo_customs[model or "Default"]
filter_input = filter_input or ""
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
steps_set = steps
guidance_set = guidance
seed = get_seed(seed)
print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed)
if model == "Realistic":
steps_set = 25
guidance_set = 7
elif model == "Anime":
steps_set = 25
guidance_set = 7
elif model == "Pixel":
steps_set = 15
guidance_set = 1.5
elif model == "Large":
steps_set = 15
guidance_set = 1.5
else:
steps_set = 25
guidance_set = 7
if not steps:
steps = steps_set
if not guidance:
guidance = guidance_set
print(steps, guidance)
repo.to(DEVICE)
parameters = {
"prompt": input,
"negative_prompt": filter_input + negative_input,
"height": height,
"width": width,
"num_inference_steps": steps,
"guidance_scale": guidance,
"num_images_per_prompt": number,
"generator": torch.Generator().manual_seed(seed),
"output_type":"pil",
}
images = repo(**parameters).images
image_paths = [save_image(img, seed) for img in images]
print(image_paths)
nsfw_prediction = nsfw_classifier(image_paths[0])
print(nsfw_prediction)
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Generate high quality images in all styles.")
with gr.Column():
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
filter_input = gr.Textbox(lines=1, value="", label="Input Filter")
negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
model = gr.Dropdown(choices=repo_customs.keys(), value="Default", label="Model")
height = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
width = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Steps")
guidance = gr.Slider(minimum=0, maximum=100, step=0.1, value=5, label = "Guidance")
number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number")
seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Gallery(columns=1, label="Image")
output_2 = gr.Label()
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[output, output_2], queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True) |