Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import uuid
|
|
7 |
import os
|
8 |
|
9 |
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline
|
10 |
-
from transformers import AutoModelForImageClassification, ViTImageProcessor
|
11 |
from PIL import Image
|
12 |
|
13 |
# Pre-Initialize
|
@@ -17,6 +16,8 @@ if DEVICE == "auto":
|
|
17 |
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
18 |
|
19 |
# Variables
|
|
|
|
|
20 |
MAX_SEED = 9007199254740991
|
21 |
DEFAULT_INPUT = ""
|
22 |
DEFAULT_NEGATIVE_INPUT = "(bad, ugly, amputation, abstract, blur, blurry, deformed, distorted, disfigured, disconnected, mutation, mutated, low quality, lowres), unfinished, title, text, signature, watermark, (limbs, legs, feet, arms, hands), (porn, nude, naked, nsfw)"
|
@@ -24,6 +25,8 @@ DEFAULT_MODEL = "Default"
|
|
24 |
DEFAULT_HEIGHT = 1024
|
25 |
DEFAULT_WIDTH = 1024
|
26 |
|
|
|
|
|
27 |
css = '''
|
28 |
.gradio-container{max-width: 560px !important}
|
29 |
h1{text-align:center}
|
@@ -32,9 +35,6 @@ footer {
|
|
32 |
}
|
33 |
'''
|
34 |
|
35 |
-
repo_nsfw_classifier = AutoModelForImageClassification.from_pretrained("Falconsai/nsfw_image_detection")
|
36 |
-
processor_nsfw_classifier = ViTImageProcessor.from_pretrained("Falconsai/nsfw_image_detection")
|
37 |
-
|
38 |
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
39 |
#repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
40 |
#repo_default.set_adapters(["base"], adapter_weights=[0.7])
|
@@ -65,6 +65,12 @@ def get_seed(seed):
|
|
65 |
else:
|
66 |
return random.randint(0, MAX_SEED)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
@spaces.GPU(duration=60)
|
69 |
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
|
70 |
|
@@ -100,7 +106,6 @@ def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATI
|
|
100 |
|
101 |
print(steps, guidance)
|
102 |
|
103 |
-
repo_nsfw_classifier.to(DEVICE)
|
104 |
repo.to(DEVICE)
|
105 |
|
106 |
parameters = {
|
@@ -120,11 +125,9 @@ def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATI
|
|
120 |
|
121 |
print(image_paths)
|
122 |
|
123 |
-
nsfw_prediction =
|
124 |
|
125 |
-
print(nsfw_prediction
|
126 |
-
print(nsfw_prediction.argmax(-1).item())
|
127 |
-
print(repo_nsfw_classifier.config.id2label[nsfw_prediction])
|
128 |
|
129 |
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}
|
130 |
|
|
|
7 |
import os
|
8 |
|
9 |
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline
|
|
|
10 |
from PIL import Image
|
11 |
|
12 |
# Pre-Initialize
|
|
|
16 |
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
17 |
|
18 |
# Variables
|
19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
+
|
21 |
MAX_SEED = 9007199254740991
|
22 |
DEFAULT_INPUT = ""
|
23 |
DEFAULT_NEGATIVE_INPUT = "(bad, ugly, amputation, abstract, blur, blurry, deformed, distorted, disfigured, disconnected, mutation, mutated, low quality, lowres), unfinished, title, text, signature, watermark, (limbs, legs, feet, arms, hands), (porn, nude, naked, nsfw)"
|
|
|
25 |
DEFAULT_HEIGHT = 1024
|
26 |
DEFAULT_WIDTH = 1024
|
27 |
|
28 |
+
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HF_TOKEN}" }
|
29 |
+
|
30 |
css = '''
|
31 |
.gradio-container{max-width: 560px !important}
|
32 |
h1{text-align:center}
|
|
|
35 |
}
|
36 |
'''
|
37 |
|
|
|
|
|
|
|
38 |
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
39 |
#repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
40 |
#repo_default.set_adapters(["base"], adapter_weights=[0.7])
|
|
|
65 |
else:
|
66 |
return random.randint(0, MAX_SEED)
|
67 |
|
68 |
+
def api_classification_request(url, filename, headers):
|
69 |
+
with open(filename, "rb") as file:
|
70 |
+
data = file.read()
|
71 |
+
response = requests.request("POST", url, headers=headers or {}, data=data)
|
72 |
+
return json.loads(response.content.decode("utf-8"))
|
73 |
+
|
74 |
@spaces.GPU(duration=60)
|
75 |
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
|
76 |
|
|
|
106 |
|
107 |
print(steps, guidance)
|
108 |
|
|
|
109 |
repo.to(DEVICE)
|
110 |
|
111 |
parameters = {
|
|
|
125 |
|
126 |
print(image_paths)
|
127 |
|
128 |
+
nsfw_prediction = api_classification_request("https://api-inference.huggingface.co/models/Falconsai/nsfw_image_detection", image_paths[0], headers)
|
129 |
|
130 |
+
print(nsfw_prediction)
|
|
|
|
|
131 |
|
132 |
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}
|
133 |
|