Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,11 @@ import spaces
|
|
5 |
import torch
|
6 |
import uuid
|
7 |
import os
|
|
|
8 |
|
9 |
from diffusers import StableDiffusionXLPipeline, ControlNetModel
|
10 |
from diffusers.models import AutoencoderKL
|
|
|
11 |
|
12 |
# Pre-Initialize
|
13 |
DEVICE = "auto"
|
@@ -38,19 +40,19 @@ repo_default = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flas
|
|
38 |
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
39 |
repo_default.set_adapters(["base"], adapter_weights=[0.7])
|
40 |
|
41 |
-
repo_pixel = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
42 |
-
repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base")
|
43 |
-
repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2")
|
44 |
-
repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1])
|
45 |
|
46 |
-
repo_large = StableDiffusionXLPipeline.from_pretrained("Corcelio/mobius", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
47 |
|
48 |
repo_customs = {
|
49 |
"Default": repo_default,
|
50 |
-
"Realistic": StableDiffusionXLPipeline.from_pretrained("stablediffusionapi/NightVision_XL", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=False, add_watermarker=False),
|
51 |
-
"Anime": StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
|
52 |
-
"Pixel": repo_pixel,
|
53 |
-
"Large": repo_large,
|
54 |
}
|
55 |
|
56 |
# Functions
|
@@ -120,8 +122,13 @@ def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATI
|
|
120 |
|
121 |
images = repo(**parameters).images
|
122 |
image_paths = [save_image(img, seed) for img in images]
|
|
|
|
|
|
|
123 |
print(image_paths)
|
124 |
-
|
|
|
|
|
125 |
|
126 |
def cloud():
|
127 |
print("[CLOUD] | Space maintained.")
|
@@ -148,8 +155,9 @@ with gr.Blocks(css=css) as main:
|
|
148 |
|
149 |
with gr.Column():
|
150 |
images = gr.Gallery(columns=1, label="Image")
|
|
|
151 |
|
152 |
-
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images], queue=False)
|
153 |
maintain.click(cloud, inputs=[], outputs=[], queue=False)
|
154 |
|
155 |
main.launch(show_api=True)
|
|
|
5 |
import torch
|
6 |
import uuid
|
7 |
import os
|
8 |
+
from transformers import pipeline
|
9 |
|
10 |
from diffusers import StableDiffusionXLPipeline, ControlNetModel
|
11 |
from diffusers.models import AutoencoderKL
|
12 |
+
from PIL import Image
|
13 |
|
14 |
# Pre-Initialize
|
15 |
DEVICE = "auto"
|
|
|
40 |
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
41 |
repo_default.set_adapters(["base"], adapter_weights=[0.7])
|
42 |
|
43 |
+
#repo_pixel = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
44 |
+
#repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base")
|
45 |
+
#repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2")
|
46 |
+
#repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1])
|
47 |
|
48 |
+
#repo_large = StableDiffusionXLPipeline.from_pretrained("Corcelio/mobius", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
49 |
|
50 |
repo_customs = {
|
51 |
"Default": repo_default,
|
52 |
+
"Realistic": None, #StableDiffusionXLPipeline.from_pretrained("stablediffusionapi/NightVision_XL", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=False, add_watermarker=False),
|
53 |
+
"Anime": None, #StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
|
54 |
+
"Pixel": None, #repo_pixel,
|
55 |
+
"Large": None, #repo_large,
|
56 |
}
|
57 |
|
58 |
# Functions
|
|
|
122 |
|
123 |
images = repo(**parameters).images
|
124 |
image_paths = [save_image(img, seed) for img in images]
|
125 |
+
|
126 |
+
classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")(Image.open(image_paths[0]))
|
127 |
+
|
128 |
print(image_paths)
|
129 |
+
print(classifier)
|
130 |
+
|
131 |
+
return image_paths, classifier
|
132 |
|
133 |
def cloud():
|
134 |
print("[CLOUD] | Space maintained.")
|
|
|
155 |
|
156 |
with gr.Column():
|
157 |
images = gr.Gallery(columns=1, label="Image")
|
158 |
+
classifier = gr.Label()
|
159 |
|
160 |
+
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images, classifier], queue=False)
|
161 |
maintain.click(cloud, inputs=[], outputs=[], queue=False)
|
162 |
|
163 |
main.launch(show_api=True)
|