Staticaliza commited on
Commit
24a6868
·
verified ·
1 Parent(s): 6c9dc28

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Imports
2
+ import gradio as gr
3
+ import random
4
+ import spaces
5
+ import torch
6
+ import numpy
7
+ import uuid
8
+ import json
9
+ import os
10
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
11
+ from PIL import Image
12
+
13
+ # Pre-Initialize
14
+ DEVICE = "auto"
15
+ if DEVICE == "auto":
16
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
17
+ print(f"[SYSTEM] | Using {DEVICE} type compute device.")
18
+
19
+ # Variables
20
+
21
+ MAX_SEED = 9007199254740991
22
+ DEFAULT_INPUT = ""
23
+ DEFAULT_NEGATIVE_INPUT = ""
24
+ DEFAULT_HEIGHT = 1024
25
+ DEFAULT_WIDTH = 1024
26
+
27
+ REPO = "sd-community/sdxl-flash"
28
+ REPO_WEIGHT = "ehristoforu/dalle-3-xl-v2"
29
+ WEIGHT = "dalle-3-xl-lora-v2.safetensors"
30
+ ADAPTER = "dalle"
31
+
32
+ model = StableDiffusionXLPipeline.from_pretrained(REPO, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
33
+ model.scheduler = EulerAncestralDiscreteScheduler.from_config(model.scheduler.config)
34
+ model.load_lora_weights(REPO_WEIGHT, weight_name=WEIGHT, adapter_name=ADAPTER)
35
+ model.set_adapters(ADAPTER, adapter_weights=[0.7])
36
+ model.to(DEVICE)
37
+
38
+ def get_seed(seed):
39
+ seed = seed.strip()
40
+ if seed.isdigit():
41
+ return int(seed)
42
+ else:
43
+ return random.randint(0, MAX_SEED)
44
+
45
+ @spaces.GPU(duration=30)
46
+ def generate(input=DEFAULT_INPUT, negative_input=DEFAULT_NEGATIVE_INPUT, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, seed=None):
47
+
48
+ print(input, negative_input, height, width, steps, guidance, seed)
49
+
50
+ pipe.to(DEVICE)
51
+ seed = int(randomize_seed_fn(seed, randomize_seed))
52
+
53
+ parameters = {
54
+ "prompt": prompt,
55
+ "negative_prompt": negative_prompt,
56
+ "height": height,
57
+ "width": width,
58
+ "num_inference_steps": steps,
59
+ "guidance_scale": guidance_scale,
60
+ "generator": torch.Generator().manual_seed(get_seed(seed)),
61
+ "use_resolution_binning": True,
62
+ "output_type":"pil",
63
+ }
64
+
65
+ images = pipe(**parameters).images
66
+ image_paths = [save_image(img) for img in images]
67
+ return image_paths
68
+
69
+ with gr.Blocks() as main:
70
+ with gr.Column():
71
+ input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
72
+ negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
73
+ height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
74
+ width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
75
+ steps = gr.Slider(minimum=0, maximum=100, step=1, value=1, label="Steps")
76
+ guidance = gr.Slider(minimum=0, maximum=100, step=0.001, value=0, label = "Guidance")
77
+ seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
78
+ submit = gr.Button("▶")
79
+
80
+ with gr.Column():
81
+ image = gr.Image(label="Image")
82
+
83
+ submit.click(generate, inputs=[input, negative_input, height, width, steps, guidance, seed], outputs=[image])
84
+
85
+ main.launch(show_api=True)