File size: 8,383 Bytes
8baf080
7823cea
016fe76
7823cea
 
2592e48
36f95d9
b6a67be
51fa2e3
36f95d9
9bc27e3
2592e48
51fa2e3
 
9c5866b
8baf080
 
9c5866b
dca58cd
 
 
 
 
 
8baf080
 
9c5866b
 
 
 
 
 
 
 
 
 
 
 
a36d980
b6a67be
 
 
51fa2e3
 
b6a67be
 
36f95d9
8baf080
51fa2e3
 
 
 
 
 
 
 
 
8baf080
51fa2e3
8baf080
 
 
 
51fa2e3
b6a67be
8d88e43
ae0535c
8d88e43
37efbf7
 
288a128
6773de5
016fe76
8baf080
288a128
8baf080
288a128
97364cf
9c5866b
 
 
 
 
e4617b7
8d88e43
 
288a128
e4617b7
8196356
8baf080
6c43e7e
288a128
 
 
6c43e7e
288a128
51fa2e3
b6a67be
8baf080
b6a67be
 
 
 
9c5866b
b6a67be
 
9c5866b
b6a67be
 
 
8196356
288a128
f5a1125
016fe76
 
6c43e7e
016fe76
 
 
 
 
 
6c43e7e
b6a67be
288a128
6c43e7e
9c5866b
016fe76
 
6c43e7e
8baf080
9c5866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8baf080
 
9c5866b
016fe76
288a128
016fe76
e4617b7
9c5866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8baf080
97364cf
7823cea
59cebaf
fff17ea
59cebaf
fff17ea
 
 
9bc27e3
 
ff6b580
288a128
bf687e5
7823cea
bf687e5
b6a67be
 
 
 
 
 
51fa2e3
b6a67be
 
288a128
b6a67be
 
 
 
 
 
7823cea
288a128
 
 
 
 
 
 
 
 
b6a67be
288a128
 
 
 
 
 
 
bf687e5
288a128
8baf080
 
 
 
 
 
 
 
 
 
 
 
8fed1b4
 
fe816e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset
import pickle
from io import BytesIO
from huggingface_hub import upload_file, hf_hub_download, list_repo_files
from pathlib import Path
import gc
import requests
import time
import shutil
import tarfile
import tensorflow as tf
from spaces import GPU


cuda_available = tf.config.list_physical_devices('GPU')
print("๐Ÿ” Dispositivos disponibles:", cuda_available)



# ๐Ÿ” Mostrar dispositivos disponibles
print("๐Ÿ” Dispositivos disponibles:", tf.config.list_physical_devices())

# ๐Ÿ” Limpiar almacenamiento temporal si existe
def clean_temp_dirs():
    print("๐Ÿงน Limpiando carpetas temporales...")
    for folder in ["embeddings", "batches"]:
        path = Path(folder)
        if path.exists() and path.is_dir():
            shutil.rmtree(path)
            print(f"โœ… Carpeta eliminada: {folder}")
        path.mkdir(exist_ok=True)

clean_temp_dirs()

# ๐Ÿ“ Parรกmetros
DATASET_ID = "Segizu/facial-recognition"
EMBEDDINGS_SUBFOLDER = "embeddings"
LOCAL_EMB_DIR = Path("embeddings")
LOCAL_EMB_DIR.mkdir(exist_ok=True)
HF_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}

# ๐Ÿ’พ Configuraciรณn
MAX_TEMP_STORAGE_GB = 40
UPLOAD_EVERY = 50

def get_folder_size(path):
    total = 0
    for dirpath, _, filenames in os.walk(path):
        for f in filenames:
            fp = os.path.join(dirpath, f)
            total += os.path.getsize(fp)
    return total / (1024 ** 3)

def preprocess_image(img: Image.Image) -> np.ndarray:
    img_rgb = img.convert("RGB")
    img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
    return np.array(img_resized)

# โœ… Cargar CSV desde el dataset
dataset = load_dataset(
    "csv",
    data_files="metadata.csv",
    split="train",
    column_names=["image"],
    header=0
)

@GPU
def build_database():
    print(f"๐Ÿ“Š Uso actual de almacenamiento temporal INICIO: {get_folder_size('.'):.2f} GB")
    print("๐Ÿ”„ Generando embeddings...")
    batch_size = 10
    archive_batch_size = 50
    batch_files = []
    batch_index = 0
    ARCHIVE_DIR = Path("batches")
    ARCHIVE_DIR.mkdir(exist_ok=True)

    for i in range(0, len(dataset), batch_size):
        batch = dataset[i:i + batch_size]
        print(f"๐Ÿ“ฆ Lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")

        for j in range(len(batch["image"])):
            image_url = batch["image"][j]

            if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
                print(f"โš ๏ธ Saltando {i + j} - URL invรกlida: {image_url}")
                continue

            name = f"image_{i + j}"
            filename = LOCAL_EMB_DIR / f"{name}.pkl"

            # Verificar si ya fue subido
            try:
                hf_hub_download(
                    repo_id=DATASET_ID,
                    repo_type="dataset",
                    filename=f"{EMBEDDINGS_SUBFOLDER}/batch_{batch_index:03}.tar.gz",
                    token=HF_TOKEN
                )
                print(f"โฉ Ya existe en remoto: {name}.pkl")
                continue
            except:
                pass

            try:
                response = requests.get(image_url, headers=headers, timeout=10)
                response.raise_for_status()
                img = Image.open(BytesIO(response.content)).convert("RGB")

                img_processed = preprocess_image(img)
                embedding = DeepFace.represent(
                    img_path=img_processed,
                    model_name="Facenet",
                    enforce_detection=False
                )[0]["embedding"]

                with open(filename, "wb") as f:
                    pickle.dump({"name": name, "img": img, "embedding": embedding}, f)

                batch_files.append(filename)
                del img_processed
                gc.collect()

                if len(batch_files) >= archive_batch_size or get_folder_size(".") > MAX_TEMP_STORAGE_GB:
                    archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
                    with tarfile.open(archive_path, "w:gz") as tar:
                        for file in batch_files:
                            tar.add(file, arcname=file.name)

                    print(f"๐Ÿ“ฆ Empaquetado: {archive_path}")

                    upload_file(
                        path_or_fileobj=str(archive_path),
                        path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
                        repo_id=DATASET_ID,
                        repo_type="dataset",
                        token=HF_TOKEN
                    )
                    print(f"โœ… Subido: {archive_path.name}")

                    for f in batch_files:
                        f.unlink()
                    archive_path.unlink()
                    print("๐Ÿงน Limpieza completada tras subida")

                    batch_files = []
                    batch_index += 1
                    time.sleep(2)
                    print(f"๐Ÿ“Š Uso actual FINAL: {get_folder_size('.'):.2f} GB")

            except Exception as e:
                print(f"โŒ Error en {name}: {e}")
                continue

    if batch_files:
        archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
        with tarfile.open(archive_path, "w:gz") as tar:
            for file in batch_files:
                tar.add(file, arcname=file.name)

        print(f"๐Ÿ“ฆ Empaquetado final: {archive_path}")

        upload_file(
            path_or_fileobj=str(archive_path),
            path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
            repo_id=DATASET_ID,
            repo_type="dataset",
            token=HF_TOKEN
        )

        for f in batch_files:
            f.unlink()
        archive_path.unlink()
        print("โœ… Subida y limpieza final")

# ๐Ÿ” Buscar similitudes
def find_similar_faces(uploaded_image: Image.Image):
    try:
        img_processed = preprocess_image(uploaded_image)
        query_embedding = DeepFace.represent(
            img_path=img_processed,
            model_name="Facenet",
            enforce_detection=False
        )[0]["embedding"]
        del img_processed
        gc.collect()
    except Exception as e:
        return [], f"โš  Error procesando imagen: {str(e)}"

    similarities = []

    try:
        embedding_files = [
            f for f in list_repo_files(DATASET_ID, repo_type="dataset", token=HF_TOKEN)
            if f.startswith(f"{EMBEDDINGS_SUBFOLDER}/") and f.endswith(".pkl")
        ]
    except Exception as e:
        return [], f"โš  Error obteniendo archivos: {str(e)}"

    for file_path in embedding_files:
        try:
            file_bytes = requests.get(
                f"https://huggingface.co/datasets/{DATASET_ID}/resolve/main/{file_path}",
                headers=headers,
                timeout=10
            ).content
            record = pickle.loads(file_bytes)

            name = record["name"]
            img = record["img"]
            emb = record["embedding"]

            dist = np.linalg.norm(np.array(query_embedding) - np.array(emb))
            sim_score = 1 / (1 + dist)
            similarities.append((sim_score, name, np.array(img)))

        except Exception as e:
            print(f"โš  Error con {file_path}: {e}")
            continue

    similarities.sort(reverse=True)
    top = similarities[:5]
    gallery = [(img, f"{name} - Similitud: {sim:.2f}") for sim, name, img in top]
    summary = "\n".join([f"{name} - Similitud: {sim:.2f}" for sim, name, _ in top])
    return gallery, summary

# ๐ŸŽ›๏ธ Interfaz Gradio
with gr.Blocks() as demo:
    gr.Markdown("## ๐Ÿ” Reconocimiento facial con DeepFace + ZeroGPU")
    with gr.Row():
        image_input = gr.Image(label="๐Ÿ“ค Sube una imagen", type="pil")
        find_btn = gr.Button("๐Ÿ”Ž Buscar similares")
    gallery = gr.Gallery(label="๐Ÿ“ธ Rostros similares")
    summary = gr.Textbox(label="๐Ÿง  Detalle", lines=6)
    find_btn.click(fn=find_similar_faces, inputs=image_input, outputs=[gallery, summary])

    with gr.Row():
        build_btn = gr.Button("โš™๏ธ Construir base de embeddings (usa GPU)")
        build_btn.click(fn=build_database, inputs=[], outputs=[])

demo.launch()