Spaces:
Runtime error
Runtime error
File size: 8,383 Bytes
8baf080 7823cea 016fe76 7823cea 2592e48 36f95d9 b6a67be 51fa2e3 36f95d9 9bc27e3 2592e48 51fa2e3 9c5866b 8baf080 9c5866b dca58cd 8baf080 9c5866b a36d980 b6a67be 51fa2e3 b6a67be 36f95d9 8baf080 51fa2e3 8baf080 51fa2e3 8baf080 51fa2e3 b6a67be 8d88e43 ae0535c 8d88e43 37efbf7 288a128 6773de5 016fe76 8baf080 288a128 8baf080 288a128 97364cf 9c5866b e4617b7 8d88e43 288a128 e4617b7 8196356 8baf080 6c43e7e 288a128 6c43e7e 288a128 51fa2e3 b6a67be 8baf080 b6a67be 9c5866b b6a67be 9c5866b b6a67be 8196356 288a128 f5a1125 016fe76 6c43e7e 016fe76 6c43e7e b6a67be 288a128 6c43e7e 9c5866b 016fe76 6c43e7e 8baf080 9c5866b 8baf080 9c5866b 016fe76 288a128 016fe76 e4617b7 9c5866b 8baf080 97364cf 7823cea 59cebaf fff17ea 59cebaf fff17ea 9bc27e3 ff6b580 288a128 bf687e5 7823cea bf687e5 b6a67be 51fa2e3 b6a67be 288a128 b6a67be 7823cea 288a128 b6a67be 288a128 bf687e5 288a128 8baf080 8fed1b4 fe816e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset
import pickle
from io import BytesIO
from huggingface_hub import upload_file, hf_hub_download, list_repo_files
from pathlib import Path
import gc
import requests
import time
import shutil
import tarfile
import tensorflow as tf
from spaces import GPU
cuda_available = tf.config.list_physical_devices('GPU')
print("๐ Dispositivos disponibles:", cuda_available)
# ๐ Mostrar dispositivos disponibles
print("๐ Dispositivos disponibles:", tf.config.list_physical_devices())
# ๐ Limpiar almacenamiento temporal si existe
def clean_temp_dirs():
print("๐งน Limpiando carpetas temporales...")
for folder in ["embeddings", "batches"]:
path = Path(folder)
if path.exists() and path.is_dir():
shutil.rmtree(path)
print(f"โ
Carpeta eliminada: {folder}")
path.mkdir(exist_ok=True)
clean_temp_dirs()
# ๐ Parรกmetros
DATASET_ID = "Segizu/facial-recognition"
EMBEDDINGS_SUBFOLDER = "embeddings"
LOCAL_EMB_DIR = Path("embeddings")
LOCAL_EMB_DIR.mkdir(exist_ok=True)
HF_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
# ๐พ Configuraciรณn
MAX_TEMP_STORAGE_GB = 40
UPLOAD_EVERY = 50
def get_folder_size(path):
total = 0
for dirpath, _, filenames in os.walk(path):
for f in filenames:
fp = os.path.join(dirpath, f)
total += os.path.getsize(fp)
return total / (1024 ** 3)
def preprocess_image(img: Image.Image) -> np.ndarray:
img_rgb = img.convert("RGB")
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
return np.array(img_resized)
# โ
Cargar CSV desde el dataset
dataset = load_dataset(
"csv",
data_files="metadata.csv",
split="train",
column_names=["image"],
header=0
)
@GPU
def build_database():
print(f"๐ Uso actual de almacenamiento temporal INICIO: {get_folder_size('.'):.2f} GB")
print("๐ Generando embeddings...")
batch_size = 10
archive_batch_size = 50
batch_files = []
batch_index = 0
ARCHIVE_DIR = Path("batches")
ARCHIVE_DIR.mkdir(exist_ok=True)
for i in range(0, len(dataset), batch_size):
batch = dataset[i:i + batch_size]
print(f"๐ฆ Lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
for j in range(len(batch["image"])):
image_url = batch["image"][j]
if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
print(f"โ ๏ธ Saltando {i + j} - URL invรกlida: {image_url}")
continue
name = f"image_{i + j}"
filename = LOCAL_EMB_DIR / f"{name}.pkl"
# Verificar si ya fue subido
try:
hf_hub_download(
repo_id=DATASET_ID,
repo_type="dataset",
filename=f"{EMBEDDINGS_SUBFOLDER}/batch_{batch_index:03}.tar.gz",
token=HF_TOKEN
)
print(f"โฉ Ya existe en remoto: {name}.pkl")
continue
except:
pass
try:
response = requests.get(image_url, headers=headers, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert("RGB")
img_processed = preprocess_image(img)
embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
with open(filename, "wb") as f:
pickle.dump({"name": name, "img": img, "embedding": embedding}, f)
batch_files.append(filename)
del img_processed
gc.collect()
if len(batch_files) >= archive_batch_size or get_folder_size(".") > MAX_TEMP_STORAGE_GB:
archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
with tarfile.open(archive_path, "w:gz") as tar:
for file in batch_files:
tar.add(file, arcname=file.name)
print(f"๐ฆ Empaquetado: {archive_path}")
upload_file(
path_or_fileobj=str(archive_path),
path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
repo_id=DATASET_ID,
repo_type="dataset",
token=HF_TOKEN
)
print(f"โ
Subido: {archive_path.name}")
for f in batch_files:
f.unlink()
archive_path.unlink()
print("๐งน Limpieza completada tras subida")
batch_files = []
batch_index += 1
time.sleep(2)
print(f"๐ Uso actual FINAL: {get_folder_size('.'):.2f} GB")
except Exception as e:
print(f"โ Error en {name}: {e}")
continue
if batch_files:
archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
with tarfile.open(archive_path, "w:gz") as tar:
for file in batch_files:
tar.add(file, arcname=file.name)
print(f"๐ฆ Empaquetado final: {archive_path}")
upload_file(
path_or_fileobj=str(archive_path),
path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
repo_id=DATASET_ID,
repo_type="dataset",
token=HF_TOKEN
)
for f in batch_files:
f.unlink()
archive_path.unlink()
print("โ
Subida y limpieza final")
# ๐ Buscar similitudes
def find_similar_faces(uploaded_image: Image.Image):
try:
img_processed = preprocess_image(uploaded_image)
query_embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
del img_processed
gc.collect()
except Exception as e:
return [], f"โ Error procesando imagen: {str(e)}"
similarities = []
try:
embedding_files = [
f for f in list_repo_files(DATASET_ID, repo_type="dataset", token=HF_TOKEN)
if f.startswith(f"{EMBEDDINGS_SUBFOLDER}/") and f.endswith(".pkl")
]
except Exception as e:
return [], f"โ Error obteniendo archivos: {str(e)}"
for file_path in embedding_files:
try:
file_bytes = requests.get(
f"https://huggingface.co/datasets/{DATASET_ID}/resolve/main/{file_path}",
headers=headers,
timeout=10
).content
record = pickle.loads(file_bytes)
name = record["name"]
img = record["img"]
emb = record["embedding"]
dist = np.linalg.norm(np.array(query_embedding) - np.array(emb))
sim_score = 1 / (1 + dist)
similarities.append((sim_score, name, np.array(img)))
except Exception as e:
print(f"โ Error con {file_path}: {e}")
continue
similarities.sort(reverse=True)
top = similarities[:5]
gallery = [(img, f"{name} - Similitud: {sim:.2f}") for sim, name, img in top]
summary = "\n".join([f"{name} - Similitud: {sim:.2f}" for sim, name, _ in top])
return gallery, summary
# ๐๏ธ Interfaz Gradio
with gr.Blocks() as demo:
gr.Markdown("## ๐ Reconocimiento facial con DeepFace + ZeroGPU")
with gr.Row():
image_input = gr.Image(label="๐ค Sube una imagen", type="pil")
find_btn = gr.Button("๐ Buscar similares")
gallery = gr.Gallery(label="๐ธ Rostros similares")
summary = gr.Textbox(label="๐ง Detalle", lines=6)
find_btn.click(fn=find_similar_faces, inputs=image_input, outputs=[gallery, summary])
with gr.Row():
build_btn = gr.Button("โ๏ธ Construir base de embeddings (usa GPU)")
build_btn.click(fn=build_database, inputs=[], outputs=[])
demo.launch()
|