Spaces:
Build error
Build error
metadata no cache
Browse files
app.py
CHANGED
|
@@ -10,71 +10,57 @@ import gc
|
|
| 10 |
import requests
|
| 11 |
from io import BytesIO
|
| 12 |
|
| 13 |
-
# 📁
|
| 14 |
EMBEDDINGS_DIR = Path("embeddings")
|
| 15 |
EMBEDDINGS_DIR.mkdir(exist_ok=True)
|
| 16 |
-
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
|
| 17 |
|
| 18 |
-
|
| 19 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 20 |
-
if HF_TOKEN:
|
| 21 |
-
headers["Authorization"] = f"Bearer {HF_TOKEN}"
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
# ✅ Cargar el dataset remoto desde Hugging Face Datasets con metadata.csv
|
| 26 |
dataset = load_dataset(
|
| 27 |
"csv",
|
| 28 |
data_files="metadata.csv",
|
| 29 |
split="train",
|
| 30 |
column_names=["image"],
|
| 31 |
-
header=0
|
| 32 |
)
|
| 33 |
|
| 34 |
print("✅ Validación post-carga")
|
| 35 |
print(dataset[0])
|
| 36 |
print("Columnas:", dataset.column_names)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
for i in range(5):
|
| 40 |
-
print(dataset[i])
|
| 41 |
-
|
| 42 |
-
# 🔄 Preprocesar imagen para DeepFace
|
| 43 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
| 44 |
img_rgb = img.convert("RGB")
|
| 45 |
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
|
| 46 |
return np.array(img_resized)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
print("📂 Cargando embeddings desde archivo...")
|
| 52 |
-
with open(EMBEDDINGS_FILE, "rb") as f:
|
| 53 |
-
return pickle.load(f)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
| 57 |
batch_size = 10
|
| 58 |
|
| 59 |
for i in range(0, len(dataset), batch_size):
|
| 60 |
batch = dataset[i:i + batch_size]
|
| 61 |
-
print(f"📦
|
| 62 |
|
| 63 |
for j in range(len(batch["image"])):
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
headers["Authorization"] = f"Bearer {HF_TOKEN}"
|
| 77 |
|
|
|
|
| 78 |
response = requests.get(image_url, headers=headers, timeout=10)
|
| 79 |
response.raise_for_status()
|
| 80 |
img = Image.open(BytesIO(response.content)).convert("RGB")
|
|
@@ -86,25 +72,19 @@ def build_database():
|
|
| 86 |
enforce_detection=False
|
| 87 |
)[0]["embedding"]
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
| 91 |
|
|
|
|
| 92 |
del img_processed
|
| 93 |
gc.collect()
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
-
print(f"❌ Error
|
| 97 |
continue
|
| 98 |
|
| 99 |
-
|
| 100 |
-
if database:
|
| 101 |
-
print("💾 Guardando embeddings finales...")
|
| 102 |
-
with open(EMBEDDINGS_FILE, "wb") as f:
|
| 103 |
-
pickle.dump(database, f)
|
| 104 |
-
|
| 105 |
-
return database
|
| 106 |
-
|
| 107 |
-
# 🔍 Buscar rostros similares
|
| 108 |
def find_similar_faces(uploaded_image: Image.Image):
|
| 109 |
try:
|
| 110 |
img_processed = preprocess_image(uploaded_image)
|
|
@@ -116,42 +96,48 @@ def find_similar_faces(uploaded_image: Image.Image):
|
|
| 116 |
del img_processed
|
| 117 |
gc.collect()
|
| 118 |
except Exception as e:
|
| 119 |
-
|
| 120 |
-
return [], "⚠ No se detectó un rostro válido."
|
| 121 |
|
| 122 |
similarities = []
|
| 123 |
-
for name, db_img, embedding in database:
|
| 124 |
-
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
|
| 125 |
-
sim_score = 1 / (1 + dist)
|
| 126 |
-
similarities.append((sim_score, name, db_img))
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
# 🚀
|
| 141 |
-
print("🚀 Iniciando
|
| 142 |
-
|
| 143 |
-
print(f"✅ Base cargada con {len(database)} imágenes.")
|
| 144 |
|
| 145 |
-
# 🎛️ Gradio
|
| 146 |
demo = gr.Interface(
|
| 147 |
fn=find_similar_faces,
|
| 148 |
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|
| 149 |
outputs=[
|
| 150 |
-
gr.Gallery(label="📸 Rostros
|
| 151 |
-
gr.Textbox(label="🧠
|
| 152 |
],
|
| 153 |
-
title="🔍
|
| 154 |
-
description="Sube una imagen y
|
| 155 |
)
|
| 156 |
|
| 157 |
demo.launch()
|
|
|
|
| 10 |
import requests
|
| 11 |
from io import BytesIO
|
| 12 |
|
| 13 |
+
# 📁 Carpeta para guardar cada embedding
|
| 14 |
EMBEDDINGS_DIR = Path("embeddings")
|
| 15 |
EMBEDDINGS_DIR.mkdir(exist_ok=True)
|
|
|
|
| 16 |
|
| 17 |
+
# ✅ Cargar dataset CSV
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset = load_dataset(
|
| 19 |
"csv",
|
| 20 |
data_files="metadata.csv",
|
| 21 |
split="train",
|
| 22 |
column_names=["image"],
|
| 23 |
+
header=0
|
| 24 |
)
|
| 25 |
|
| 26 |
print("✅ Validación post-carga")
|
| 27 |
print(dataset[0])
|
| 28 |
print("Columnas:", dataset.column_names)
|
| 29 |
|
| 30 |
+
# 🔄 Preprocesamiento para DeepFace
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
| 32 |
img_rgb = img.convert("RGB")
|
| 33 |
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
|
| 34 |
return np.array(img_resized)
|
| 35 |
|
| 36 |
+
# 🔐 Header si el dataset es privado
|
| 37 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 38 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# 📦 Construir base (embedding por archivo)
|
| 41 |
+
def build_database():
|
| 42 |
+
print("🔄 Generando embeddings...")
|
| 43 |
batch_size = 10
|
| 44 |
|
| 45 |
for i in range(0, len(dataset), batch_size):
|
| 46 |
batch = dataset[i:i + batch_size]
|
| 47 |
+
print(f"📦 Lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
| 48 |
|
| 49 |
for j in range(len(batch["image"])):
|
| 50 |
+
item = {"image": batch["image"][j]}
|
| 51 |
+
image_url = item["image"]
|
| 52 |
|
| 53 |
+
# Validar
|
| 54 |
+
if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
|
| 55 |
+
print(f"⚠️ Saltando {i + j} - URL inválida: {image_url}")
|
| 56 |
+
continue
|
| 57 |
|
| 58 |
+
name = f"image_{i + j}"
|
| 59 |
+
emb_path = EMBEDDINGS_DIR / f"{name}.pkl"
|
| 60 |
+
if emb_path.exists():
|
| 61 |
+
continue # Ya existe
|
|
|
|
| 62 |
|
| 63 |
+
try:
|
| 64 |
response = requests.get(image_url, headers=headers, timeout=10)
|
| 65 |
response.raise_for_status()
|
| 66 |
img = Image.open(BytesIO(response.content)).convert("RGB")
|
|
|
|
| 72 |
enforce_detection=False
|
| 73 |
)[0]["embedding"]
|
| 74 |
|
| 75 |
+
# Guardar como archivo individual
|
| 76 |
+
with open(emb_path, "wb") as f:
|
| 77 |
+
pickle.dump({"name": name, "img": img, "embedding": embedding}, f)
|
| 78 |
|
| 79 |
+
print(f"✅ Guardado: {name}")
|
| 80 |
del img_processed
|
| 81 |
gc.collect()
|
| 82 |
|
| 83 |
except Exception as e:
|
| 84 |
+
print(f"❌ Error en {name}: {e}")
|
| 85 |
continue
|
| 86 |
|
| 87 |
+
# 🔍 Buscar similitudes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
def find_similar_faces(uploaded_image: Image.Image):
|
| 89 |
try:
|
| 90 |
img_processed = preprocess_image(uploaded_image)
|
|
|
|
| 96 |
del img_processed
|
| 97 |
gc.collect()
|
| 98 |
except Exception as e:
|
| 99 |
+
return [], f"⚠ Error procesando imagen: {str(e)}"
|
|
|
|
| 100 |
|
| 101 |
similarities = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
for emb_file in EMBEDDINGS_DIR.glob("*.pkl"):
|
| 104 |
+
try:
|
| 105 |
+
with open(emb_file, "rb") as f:
|
| 106 |
+
record = pickle.load(f)
|
| 107 |
|
| 108 |
+
name = record["name"]
|
| 109 |
+
img = record["img"]
|
| 110 |
+
emb = record["embedding"]
|
| 111 |
+
|
| 112 |
+
dist = np.linalg.norm(np.array(query_embedding) - np.array(emb))
|
| 113 |
+
sim_score = 1 / (1 + dist)
|
| 114 |
+
similarities.append((sim_score, name, np.array(img)))
|
| 115 |
+
|
| 116 |
+
except Exception as e:
|
| 117 |
+
print(f"⚠ Error leyendo {emb_file}: {e}")
|
| 118 |
+
continue
|
| 119 |
+
|
| 120 |
+
similarities.sort(reverse=True)
|
| 121 |
+
top = similarities[:5]
|
| 122 |
|
| 123 |
+
gallery = [(img, f"{name} - Similitud: {sim:.2f}") for sim, name, img in top]
|
| 124 |
+
summary = "\n".join([f"{name} - Similitud: {sim:.2f}" for sim, name, _ in top])
|
| 125 |
+
return gallery, summary
|
| 126 |
|
| 127 |
+
# 🚀 Ejecutar al inicio
|
| 128 |
+
print("🚀 Iniciando app...")
|
| 129 |
+
build_database()
|
|
|
|
| 130 |
|
| 131 |
+
# 🎛️ Interfaz Gradio
|
| 132 |
demo = gr.Interface(
|
| 133 |
fn=find_similar_faces,
|
| 134 |
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|
| 135 |
outputs=[
|
| 136 |
+
gr.Gallery(label="📸 Rostros similares"),
|
| 137 |
+
gr.Textbox(label="🧠 Detalle", lines=6)
|
| 138 |
],
|
| 139 |
+
title="🔍 Reconocimiento facial con DeepFace",
|
| 140 |
+
description="Sube una imagen y encuentra coincidencias en el dataset privado de Hugging Face usando embeddings Facenet."
|
| 141 |
)
|
| 142 |
|
| 143 |
demo.launch()
|