Spaces:
Build error
Build error
metadata v12
Browse files
app.py
CHANGED
|
@@ -8,25 +8,24 @@ import pickle
|
|
| 8 |
from pathlib import Path
|
| 9 |
import gc
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
-
|
| 14 |
-
# 📁 Directorio para embeddings
|
| 15 |
EMBEDDINGS_DIR = Path("embeddings")
|
| 16 |
EMBEDDINGS_DIR.mkdir(exist_ok=True)
|
| 17 |
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
|
| 18 |
|
| 19 |
-
# ✅ Cargar dataset
|
| 20 |
dataset = load_dataset(
|
| 21 |
"csv",
|
| 22 |
data_files="metadata.csv",
|
| 23 |
-
split="train"
|
| 24 |
-
)
|
|
|
|
| 25 |
print("✅ Primer item:", dataset[0])
|
| 26 |
|
|
|
|
| 27 |
dataset = dataset.cast_column("image", HfImage())
|
| 28 |
|
| 29 |
-
# 🔄 Preprocesar imagen para
|
| 30 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
| 31 |
img_rgb = img.convert("RGB")
|
| 32 |
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
|
|
@@ -35,11 +34,11 @@ def preprocess_image(img: Image.Image) -> np.ndarray:
|
|
| 35 |
# 📦 Construir base de datos de embeddings
|
| 36 |
def build_database():
|
| 37 |
if EMBEDDINGS_FILE.exists():
|
| 38 |
-
print("📂 Cargando embeddings desde
|
| 39 |
-
with open(EMBEDDINGS_FILE,
|
| 40 |
return pickle.load(f)
|
| 41 |
|
| 42 |
-
print("🔄 Calculando embeddings
|
| 43 |
database = []
|
| 44 |
batch_size = 10
|
| 45 |
|
|
@@ -47,15 +46,10 @@ def build_database():
|
|
| 47 |
batch = dataset[i:i + batch_size]
|
| 48 |
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
| 49 |
|
| 50 |
-
for j,
|
| 51 |
try:
|
| 52 |
-
if not isinstance(item, dict) or "image" not in item:
|
| 53 |
-
print(f"⚠️ Saltando item {i+j} - estructura inválida: {item}")
|
| 54 |
-
continue
|
| 55 |
-
|
| 56 |
-
img = item["image"]
|
| 57 |
if not isinstance(img, Image.Image):
|
| 58 |
-
print(f"⚠️ Saltando item {i+j} - no es imagen: {type(img)}")
|
| 59 |
continue
|
| 60 |
|
| 61 |
img_processed = preprocess_image(img)
|
|
@@ -65,20 +59,20 @@ def build_database():
|
|
| 65 |
enforce_detection=False
|
| 66 |
)[0]["embedding"]
|
| 67 |
|
| 68 |
-
database.append((f"image_{i+j}", img, embedding))
|
| 69 |
-
print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")
|
| 70 |
|
| 71 |
del img_processed
|
| 72 |
gc.collect()
|
| 73 |
|
| 74 |
except Exception as e:
|
| 75 |
-
print(f"❌ Error al procesar imagen {i+j}: {str(e)}")
|
| 76 |
continue
|
| 77 |
|
| 78 |
-
# Guardar después de cada
|
| 79 |
if database:
|
| 80 |
-
print("💾 Guardando
|
| 81 |
-
with open(EMBEDDINGS_FILE,
|
| 82 |
pickle.dump(database, f)
|
| 83 |
|
| 84 |
gc.collect()
|
|
@@ -97,8 +91,8 @@ def find_similar_faces(uploaded_image: Image.Image):
|
|
| 97 |
del img_processed
|
| 98 |
gc.collect()
|
| 99 |
except Exception as e:
|
| 100 |
-
print(f"Error al procesar imagen de
|
| 101 |
-
return [], "⚠ No se detectó un rostro válido
|
| 102 |
|
| 103 |
similarities = []
|
| 104 |
for name, db_img, embedding in database:
|
|
@@ -110,18 +104,18 @@ def find_similar_faces(uploaded_image: Image.Image):
|
|
| 110 |
top_matches = similarities[:5]
|
| 111 |
|
| 112 |
gallery_items = []
|
| 113 |
-
|
| 114 |
for sim, name, img in top_matches:
|
| 115 |
caption = f"{name} - Similitud: {sim:.2f}"
|
| 116 |
gallery_items.append((img, caption))
|
| 117 |
-
|
| 118 |
|
| 119 |
-
return gallery_items,
|
| 120 |
|
| 121 |
-
#
|
| 122 |
print("🚀 Iniciando aplicación...")
|
| 123 |
database = build_database()
|
| 124 |
-
print(f"✅ Base
|
| 125 |
|
| 126 |
# 🎛️ Interfaz Gradio
|
| 127 |
demo = gr.Interface(
|
|
@@ -129,10 +123,10 @@ demo = gr.Interface(
|
|
| 129 |
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|
| 130 |
outputs=[
|
| 131 |
gr.Gallery(label="📸 Rostros más similares"),
|
| 132 |
-
gr.Textbox(label="🧠
|
| 133 |
],
|
| 134 |
title="🔍 Buscador de Rostros con DeepFace",
|
| 135 |
-
description="Sube una imagen y se comparará contra los rostros del dataset
|
| 136 |
)
|
| 137 |
|
| 138 |
demo.launch()
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
import gc
|
| 10 |
|
| 11 |
+
# 📁 Directorio para almacenar embeddings
|
|
|
|
|
|
|
|
|
|
| 12 |
EMBEDDINGS_DIR = Path("embeddings")
|
| 13 |
EMBEDDINGS_DIR.mkdir(exist_ok=True)
|
| 14 |
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
|
| 15 |
|
| 16 |
+
# ✅ Cargar dataset desde metadata.csv (con URLs absolutas)
|
| 17 |
dataset = load_dataset(
|
| 18 |
"csv",
|
| 19 |
data_files="metadata.csv",
|
| 20 |
+
split="train"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
print("✅ Primer item:", dataset[0])
|
| 24 |
|
| 25 |
+
# 🖼️ Convertir columna a imágenes usando HfImage (PIL)
|
| 26 |
dataset = dataset.cast_column("image", HfImage())
|
| 27 |
|
| 28 |
+
# 🔄 Preprocesar imagen para DeepFace
|
| 29 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
| 30 |
img_rgb = img.convert("RGB")
|
| 31 |
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
|
|
|
|
| 34 |
# 📦 Construir base de datos de embeddings
|
| 35 |
def build_database():
|
| 36 |
if EMBEDDINGS_FILE.exists():
|
| 37 |
+
print("📂 Cargando embeddings desde archivo...")
|
| 38 |
+
with open(EMBEDDINGS_FILE, "rb") as f:
|
| 39 |
return pickle.load(f)
|
| 40 |
|
| 41 |
+
print("🔄 Calculando embeddings...")
|
| 42 |
database = []
|
| 43 |
batch_size = 10
|
| 44 |
|
|
|
|
| 46 |
batch = dataset[i:i + batch_size]
|
| 47 |
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
| 48 |
|
| 49 |
+
for j, img in enumerate(batch):
|
| 50 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
if not isinstance(img, Image.Image):
|
| 52 |
+
print(f"⚠️ Saltando item {i + j} - no es imagen: {type(img)}")
|
| 53 |
continue
|
| 54 |
|
| 55 |
img_processed = preprocess_image(img)
|
|
|
|
| 59 |
enforce_detection=False
|
| 60 |
)[0]["embedding"]
|
| 61 |
|
| 62 |
+
database.append((f"image_{i + j}", img, embedding))
|
| 63 |
+
print(f"✅ Procesada imagen {i + j + 1}/{len(dataset)}")
|
| 64 |
|
| 65 |
del img_processed
|
| 66 |
gc.collect()
|
| 67 |
|
| 68 |
except Exception as e:
|
| 69 |
+
print(f"❌ Error al procesar imagen {i + j}: {str(e)}")
|
| 70 |
continue
|
| 71 |
|
| 72 |
+
# Guardar después de cada batch
|
| 73 |
if database:
|
| 74 |
+
print("💾 Guardando embeddings...")
|
| 75 |
+
with open(EMBEDDINGS_FILE, "wb") as f:
|
| 76 |
pickle.dump(database, f)
|
| 77 |
|
| 78 |
gc.collect()
|
|
|
|
| 91 |
del img_processed
|
| 92 |
gc.collect()
|
| 93 |
except Exception as e:
|
| 94 |
+
print(f"Error al procesar imagen de entrada: {str(e)}")
|
| 95 |
+
return [], "⚠ No se detectó un rostro válido."
|
| 96 |
|
| 97 |
similarities = []
|
| 98 |
for name, db_img, embedding in database:
|
|
|
|
| 104 |
top_matches = similarities[:5]
|
| 105 |
|
| 106 |
gallery_items = []
|
| 107 |
+
summary = ""
|
| 108 |
for sim, name, img in top_matches:
|
| 109 |
caption = f"{name} - Similitud: {sim:.2f}"
|
| 110 |
gallery_items.append((img, caption))
|
| 111 |
+
summary += caption + "\n"
|
| 112 |
|
| 113 |
+
return gallery_items, summary
|
| 114 |
|
| 115 |
+
# 🚀 Inicializar app
|
| 116 |
print("🚀 Iniciando aplicación...")
|
| 117 |
database = build_database()
|
| 118 |
+
print(f"✅ Base cargada con {len(database)} imágenes.")
|
| 119 |
|
| 120 |
# 🎛️ Interfaz Gradio
|
| 121 |
demo = gr.Interface(
|
|
|
|
| 123 |
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|
| 124 |
outputs=[
|
| 125 |
gr.Gallery(label="📸 Rostros más similares"),
|
| 126 |
+
gr.Textbox(label="🧠 Resumen de similitud", lines=6)
|
| 127 |
],
|
| 128 |
title="🔍 Buscador de Rostros con DeepFace",
|
| 129 |
+
description="Sube una imagen y se comparará contra los rostros del dataset `Segizu/facial-recognition`."
|
| 130 |
)
|
| 131 |
|
| 132 |
demo.launch()
|