Spaces:
Build error
Build error
metadata v12
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import numpy as np
|
2 |
-
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from deepface import DeepFace
|
5 |
from datasets import load_dataset
|
@@ -10,25 +10,22 @@ import gc
|
|
10 |
import requests
|
11 |
from io import BytesIO
|
12 |
|
13 |
-
# 📁 Directorio para
|
14 |
EMBEDDINGS_DIR = Path("embeddings")
|
15 |
EMBEDDINGS_DIR.mkdir(exist_ok=True)
|
16 |
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
|
17 |
|
18 |
-
# ✅ Cargar dataset desde metadata.csv
|
19 |
dataset = load_dataset(
|
20 |
"csv",
|
21 |
data_files="metadata.csv",
|
22 |
-
split="train"
|
23 |
-
column_names=["image"], # 👈 forzar el nombre de la columna
|
24 |
-
header=0 # 👈 indicar que la primera fila es encabezado
|
25 |
)
|
26 |
-
|
|
|
27 |
for i in range(5):
|
28 |
print(dataset[i])
|
29 |
|
30 |
-
print("✅ Primer item:", dataset[0])
|
31 |
-
|
32 |
# 🔄 Preprocesar imagen para DeepFace
|
33 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
34 |
img_rgb = img.convert("RGB")
|
@@ -50,49 +47,43 @@ def build_database():
|
|
50 |
batch = dataset[i:i + batch_size]
|
51 |
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
continue
|
59 |
-
|
60 |
-
image_url = item["image"]
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# Descargar y procesar imagen
|
68 |
-
response = requests.get(image_url, timeout=10)
|
69 |
-
response.raise_for_status()
|
70 |
-
img = Image.open(BytesIO(response.content)).convert("RGB")
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
model_name="Facenet",
|
76 |
-
enforce_detection=False
|
77 |
-
)[0]["embedding"]
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
continue
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
with open(EMBEDDINGS_FILE, "wb") as f:
|
93 |
-
pickle.dump(database, f)
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
|
97 |
return database
|
98 |
|
@@ -129,21 +120,21 @@ def find_similar_faces(uploaded_image: Image.Image):
|
|
129 |
|
130 |
return gallery_items, summary
|
131 |
|
132 |
-
# 🚀
|
133 |
print("🚀 Iniciando aplicación...")
|
134 |
database = build_database()
|
135 |
print(f"✅ Base cargada con {len(database)} imágenes.")
|
136 |
|
137 |
-
# 🎛️
|
138 |
demo = gr.Interface(
|
139 |
fn=find_similar_faces,
|
140 |
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|
141 |
outputs=[
|
142 |
gr.Gallery(label="📸 Rostros más similares"),
|
143 |
-
gr.Textbox(label="🧠
|
144 |
],
|
145 |
title="🔍 Buscador de Rostros con DeepFace",
|
146 |
-
description="Sube una imagen y se comparará contra los rostros del dataset `Segizu/facial-recognition
|
147 |
)
|
148 |
|
149 |
demo.launch()
|
|
|
1 |
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from deepface import DeepFace
|
5 |
from datasets import load_dataset
|
|
|
10 |
import requests
|
11 |
from io import BytesIO
|
12 |
|
13 |
+
# 📁 Directorio local para embeddings
|
14 |
EMBEDDINGS_DIR = Path("embeddings")
|
15 |
EMBEDDINGS_DIR.mkdir(exist_ok=True)
|
16 |
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
|
17 |
|
18 |
+
# ✅ Cargar el dataset remoto desde Hugging Face Datasets con metadata.csv
|
19 |
dataset = load_dataset(
|
20 |
"csv",
|
21 |
data_files="metadata.csv",
|
22 |
+
split="train"
|
|
|
|
|
23 |
)
|
24 |
+
|
25 |
+
print("✅ Primeros ítems de validación:")
|
26 |
for i in range(5):
|
27 |
print(dataset[i])
|
28 |
|
|
|
|
|
29 |
# 🔄 Preprocesar imagen para DeepFace
|
30 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
31 |
img_rgb = img.convert("RGB")
|
|
|
47 |
batch = dataset[i:i + batch_size]
|
48 |
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
49 |
|
50 |
+
for j, item in enumerate(batch):
|
51 |
+
try:
|
52 |
+
if not isinstance(item, dict) or "image" not in item:
|
53 |
+
print(f"⚠️ Saltando item {i + j} - estructura inválida: {item}")
|
54 |
+
continue
|
|
|
|
|
|
|
55 |
|
56 |
+
image_url = item["image"]
|
57 |
+
if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
|
58 |
+
print(f"⚠️ Saltando item {i + j} - URL inválida: {image_url}")
|
59 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
response = requests.get(image_url, timeout=10)
|
62 |
+
response.raise_for_status()
|
63 |
+
img = Image.open(BytesIO(response.content)).convert("RGB")
|
|
|
|
|
|
|
64 |
|
65 |
+
img_processed = preprocess_image(img)
|
66 |
+
embedding = DeepFace.represent(
|
67 |
+
img_path=img_processed,
|
68 |
+
model_name="Facenet",
|
69 |
+
enforce_detection=False
|
70 |
+
)[0]["embedding"]
|
71 |
|
72 |
+
database.append((f"image_{i + j}", img, embedding))
|
73 |
+
print(f"✅ Procesada imagen {i + j + 1}/{len(dataset)}")
|
74 |
|
75 |
+
del img_processed
|
76 |
+
gc.collect()
|
|
|
77 |
|
78 |
+
except Exception as e:
|
79 |
+
print(f"❌ Error al procesar imagen {i + j}: {str(e)}")
|
80 |
+
continue
|
|
|
|
|
81 |
|
82 |
+
# Guardar al final si hay datos
|
83 |
+
if database:
|
84 |
+
print("💾 Guardando embeddings finales...")
|
85 |
+
with open(EMBEDDINGS_FILE, "wb") as f:
|
86 |
+
pickle.dump(database, f)
|
87 |
|
88 |
return database
|
89 |
|
|
|
120 |
|
121 |
return gallery_items, summary
|
122 |
|
123 |
+
# 🚀 Iniciar aplicación
|
124 |
print("🚀 Iniciando aplicación...")
|
125 |
database = build_database()
|
126 |
print(f"✅ Base cargada con {len(database)} imágenes.")
|
127 |
|
128 |
+
# 🎛️ Gradio UI
|
129 |
demo = gr.Interface(
|
130 |
fn=find_similar_faces,
|
131 |
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|
132 |
outputs=[
|
133 |
gr.Gallery(label="📸 Rostros más similares"),
|
134 |
+
gr.Textbox(label="🧠 Similitud", lines=6)
|
135 |
],
|
136 |
title="🔍 Buscador de Rostros con DeepFace",
|
137 |
+
description="Sube una imagen y se comparará contra los rostros del dataset `Segizu/facial-recognition` almacenado en Hugging Face Datasets."
|
138 |
)
|
139 |
|
140 |
demo.launch()
|