File size: 9,226 Bytes
7823cea
016fe76
7823cea
 
2592e48
b78ec6d
36f95d9
b6a67be
51fa2e3
36f95d9
9bc27e3
2592e48
51fa2e3
 
9c5866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a36d980
b6a67be
 
 
51fa2e3
 
b6a67be
 
36f95d9
51fa2e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6a67be
8d88e43
ae0535c
8d88e43
37efbf7
 
288a128
6773de5
016fe76
37efbf7
 
 
 
b6a67be
97364cf
59cebaf
 
 
 
9c5866b
288a128
9c5866b
288a128
97364cf
9c5866b
 
 
 
 
e4617b7
8d88e43
 
288a128
e4617b7
8196356
288a128
 
6c43e7e
288a128
 
 
6c43e7e
288a128
51fa2e3
b6a67be
9c5866b
b6a67be
 
 
 
9c5866b
b6a67be
 
9c5866b
b6a67be
 
 
8196356
288a128
f5a1125
016fe76
 
6c43e7e
016fe76
 
 
 
 
 
6c43e7e
b6a67be
288a128
6c43e7e
9c5866b
016fe76
 
6c43e7e
9c5866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
016fe76
288a128
016fe76
e4617b7
9c5866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fa2e3
b6a67be
97364cf
7823cea
59cebaf
fff17ea
59cebaf
fff17ea
 
 
9bc27e3
 
ff6b580
288a128
bf687e5
7823cea
bf687e5
b6a67be
 
 
 
 
 
51fa2e3
b6a67be
 
288a128
b6a67be
 
 
 
 
 
7823cea
288a128
 
 
 
 
 
 
 
 
b6a67be
288a128
 
 
 
 
 
 
bf687e5
b6a67be
288a128
 
fff17ea
288a128
bf687e5
7823cea
 
bf687e5
288a128
 
bf687e5
288a128
 
bf687e5
8fed1b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset
import os
import pickle
from io import BytesIO
from huggingface_hub import upload_file, hf_hub_download, list_repo_files
from pathlib import Path
import gc
import requests
import time
import shutil
import tarfile


# 🔁 Limpiar almacenamiento temporal si existe
def clean_temp_dirs():
    print("🧹 Limpiando carpetas temporales...")

    for folder in ["embeddings", "batches"]:
        path = Path(folder)
        if path.exists() and path.is_dir():
            shutil.rmtree(path)
            print(f"✅ Carpeta eliminada: {folder}")
        path.mkdir(exist_ok=True)

clean_temp_dirs()

# 📁 Parámetros
DATASET_ID = "Segizu/facial-recognition"
EMBEDDINGS_SUBFOLDER = "embeddings"
LOCAL_EMB_DIR = Path("embeddings")
LOCAL_EMB_DIR.mkdir(exist_ok=True)
HF_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}

# 💾 Configuración de control de almacenamiento
MAX_TEMP_STORAGE_GB = 40
UPLOAD_EVERY = 50
embeddings_to_upload = []

def get_folder_size(path):
    total = 0
    for dirpath, _, filenames in os.walk(path):
        for f in filenames:
            fp = os.path.join(dirpath, f)
            total += os.path.getsize(fp)
    return total / (1024 ** 3)  # En GB

def flush_embeddings():
    global embeddings_to_upload
    print("🚀 Subiendo lote de embeddings a Hugging Face...")

    for emb_file in embeddings_to_upload:
        try:
            filename = emb_file.name
            upload_file(
                path_or_fileobj=str(emb_file),
                path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{filename}",
                repo_id=DATASET_ID,
                repo_type="dataset",
                token=HF_TOKEN
            )
            os.remove(emb_file)
            print(f"✅ Subido y eliminado: {filename}")
            time.sleep(1.2)  # Evita 429
        except Exception as e:
            print(f"❌ Error subiendo {filename}: {e}")
            continue

    embeddings_to_upload = []

# ✅ Cargar CSV desde el dataset
dataset = load_dataset(
    "csv",
    data_files="metadata.csv",
    split="train",
    column_names=["image"],
    header=0
)

print("✅ Validación post-carga")
print(dataset[0])
print("Columnas:", dataset.column_names)

# 🔄 Preprocesamiento
def preprocess_image(img: Image.Image) -> np.ndarray:
    img_rgb = img.convert("RGB")
    img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
    return np.array(img_resized)


def build_database():
    print(f"📊 Uso actual de almacenamiento tempora _ INICIO_: {get_folder_size('.'):.2f} GB")
    print("🔄 Generando embeddings...")
    batch_size = 10
    archive_batch_size = 50
    batch_files = []
    batch_index = 0
    ARCHIVE_DIR = Path("batches")
    ARCHIVE_DIR.mkdir(exist_ok=True)

    for i in range(0, len(dataset), batch_size):
        batch = dataset[i:i + batch_size]
        print(f"📦 Lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")

        for j in range(len(batch["image"])):
            item = {"image": batch["image"][j]}
            image_url = item["image"]

            if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
                print(f"⚠️ Saltando {i + j} - URL inválida: {image_url}")
                continue

            name = f"image_{i + j}"
            filename = LOCAL_EMB_DIR / f"{name}.pkl"

            # Verificar si ya existe en Hugging Face Hub
            try:
                hf_hub_download(
                    repo_id=DATASET_ID,
                    repo_type="dataset",
                    filename=f"{EMBEDDINGS_SUBFOLDER}/batch_{batch_index:03}.tar.gz",
                    token=HF_TOKEN
                )
                print(f"⏩ Ya existe en remoto: {name}.pkl")
                continue
            except:
                pass

            try:
                response = requests.get(image_url, headers=headers, timeout=10)
                response.raise_for_status()
                img = Image.open(BytesIO(response.content)).convert("RGB")

                img_processed = preprocess_image(img)
                embedding = DeepFace.represent(
                    img_path=img_processed,
                    model_name="Facenet",
                    enforce_detection=False
                )[0]["embedding"]

                with open(filename, "wb") as f:
                    pickle.dump({"name": name, "img": img, "embedding": embedding}, f)

                batch_files.append(filename)
                del img_processed
                gc.collect()

                # Si llegamos al tamaño de archivo por lote o espacio es crítico
                if len(batch_files) >= archive_batch_size or get_folder_size(".") > 40:
                    archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
                    with tarfile.open(archive_path, "w:gz") as tar:
                        for file in batch_files:
                            tar.add(file, arcname=file.name)

                    print(f"📦 Empaquetado: {archive_path}")

                    # Subida al Hub
                    upload_file(
                        path_or_fileobj=str(archive_path),
                        path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
                        repo_id=DATASET_ID,
                        repo_type="dataset",
                        token=HF_TOKEN
                    )
                    print(f"✅ Subido: {archive_path.name}")

                    # Borrar .pkl y el .tar.gz local
                    for f in batch_files:
                        f.unlink()
                    archive_path.unlink()

                    print("🧹 Limpieza completada tras subida")

                    batch_files = []
                    batch_index += 1
                    time.sleep(2)  # Pausa para evitar 429
                    print(f"📊 Uso actual de almacenamiento tempora _ FINAL_: {get_folder_size('.'):.2f} GB")


            except Exception as e:
                print(f"❌ Error en {name}: {e}")
                continue

    # Último lote si queda algo
    if batch_files:
        archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
        with tarfile.open(archive_path, "w:gz") as tar:
            for file in batch_files:
                tar.add(file, arcname=file.name)

        print(f"📦 Empaquetado final: {archive_path}")

        upload_file(
            path_or_fileobj=str(archive_path),
            path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
            repo_id=DATASET_ID,
            repo_type="dataset",
            token=HF_TOKEN
        )

        for f in batch_files:
            f.unlink()
        archive_path.unlink()
        print("✅ Subida y limpieza final")


# 🔍 Buscar similitudes desde archivos remotos
def find_similar_faces(uploaded_image: Image.Image):
    try:
        img_processed = preprocess_image(uploaded_image)
        query_embedding = DeepFace.represent(
            img_path=img_processed,
            model_name="Facenet",
            enforce_detection=False
        )[0]["embedding"]
        del img_processed
        gc.collect()
    except Exception as e:
        return [], f"⚠ Error procesando imagen: {str(e)}"

    similarities = []

    try:
        embedding_files = [
            f for f in list_repo_files(DATASET_ID, repo_type="dataset", token=HF_TOKEN)
            if f.startswith(f"{EMBEDDINGS_SUBFOLDER}/") and f.endswith(".pkl")
        ]
    except Exception as e:
        return [], f"⚠ Error obteniendo archivos: {str(e)}"

    for file_path in embedding_files:
        try:
            file_bytes = requests.get(
                f"https://huggingface.co/datasets/{DATASET_ID}/resolve/main/{file_path}",
                headers=headers,
                timeout=10
            ).content
            record = pickle.loads(file_bytes)

            name = record["name"]
            img = record["img"]
            emb = record["embedding"]

            dist = np.linalg.norm(np.array(query_embedding) - np.array(emb))
            sim_score = 1 / (1 + dist)
            similarities.append((sim_score, name, np.array(img)))

        except Exception as e:
            print(f"⚠ Error con {file_path}: {e}")
            continue

    similarities.sort(reverse=True)
    top = similarities[:5]
    gallery = [(img, f"{name} - Similitud: {sim:.2f}") for sim, name, img in top]
    summary = "\n".join([f"{name} - Similitud: {sim:.2f}" for sim, name, _ in top])
    return gallery, summary

# 🚀 Inicializar
print("🚀 Iniciando app...")
build_database()

# 🎛️ Interfaz Gradio
demo = gr.Interface(
    fn=find_similar_faces,
    inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
    outputs=[
        gr.Gallery(label="📸 Rostros similares"),
        gr.Textbox(label="🧠 Detalle", lines=6)
    ],
    title="🔍 Reconocimiento facial con DeepFace",
    description="Sube una imagen y encuentra coincidencias en el dataset privado de Hugging Face usando embeddings Facenet."
)

demo.launch()