File size: 5,088 Bytes
7823cea
016fe76
7823cea
 
2592e48
b78ec6d
36f95d9
 
9bc27e3
2592e48
 
a36d980
016fe76
78e29c2
 
 
36f95d9
f5a1125
 
 
 
 
 
 
016fe76
8d88e43
ae0535c
8d88e43
37efbf7
 
 
6773de5
016fe76
37efbf7
 
 
 
016fe76
db84863
 
9fd2ec3
6773de5
97364cf
59cebaf
 
 
 
fff17ea
7823cea
78e29c2
6773de5
 
36f95d9
e4617b7
6773de5
7823cea
97364cf
e4617b7
8d88e43
 
 
e4617b7
8196356
016fe76
8196356
6c43e7e
016fe76
 
 
 
6c43e7e
8196356
 
 
 
 
 
f5a1125
016fe76
 
6c43e7e
016fe76
 
 
 
 
 
6c43e7e
016fe76
 
6c43e7e
016fe76
 
6c43e7e
016fe76
 
 
e4617b7
016fe76
 
 
 
 
e4617b7
7823cea
 
fff17ea
97364cf
7823cea
59cebaf
fff17ea
59cebaf
fff17ea
 
 
9bc27e3
 
ff6b580
6773de5
 
bf687e5
7823cea
fff17ea
 
 
 
bf687e5
7823cea
36f95d9
7823cea
bf687e5
6773de5
17df602
7823cea
2955be6
6773de5
7823cea
6773de5
bf687e5
016fe76
36f95d9
fff17ea
6773de5
fff17ea
016fe76
bf687e5
7823cea
 
bf687e5
f134081
016fe76
bf687e5
7823cea
016fe76
bf687e5
8fed1b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset
import os
import pickle
from pathlib import Path
import gc
import requests
from io import BytesIO

# 📁 Directorio local para embeddings
EMBEDDINGS_DIR = Path("embeddings")
EMBEDDINGS_DIR.mkdir(exist_ok=True)
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"

headers = {}
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
    headers["Authorization"] = f"Bearer {HF_TOKEN}"



# ✅ Cargar el dataset remoto desde Hugging Face Datasets con metadata.csv
dataset = load_dataset(
    "csv",
    data_files="metadata.csv",
    split="train",
    column_names=["image"],
    header=0  # 👈 asegúrate de que la primera fila se trate como encabezado
)

print("✅ Validación post-carga")
print(dataset[0])
print("Columnas:", dataset.column_names)

print("✅ Primeros ítems de validación:")
for i in range(5):
    print(dataset[i])

# 🔄 Preprocesar imagen para DeepFace
def preprocess_image(img: Image.Image) -> np.ndarray:
    img_rgb = img.convert("RGB")
    img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
    return np.array(img_resized)

# 📦 Construir base de datos de embeddings
def build_database():
    if EMBEDDINGS_FILE.exists():
        print("📂 Cargando embeddings desde archivo...")
        with open(EMBEDDINGS_FILE, "rb") as f:
            return pickle.load(f)

    print("🔄 Calculando embeddings...")
    database = []
    batch_size = 10

    for i in range(0, len(dataset), batch_size):
        batch = dataset[i:i + batch_size]
        print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")

        for j in range(len(batch["image"])):
            try:
                item = {"image": batch["image"][j]}

                image_url = item["image"]
                if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
                    print(f"⚠️ Saltando item {i + j} - URL inválida: {image_url}")
                    continue

                # Autenticación para datasets privados
                headers = {}
                HF_TOKEN = os.getenv("HF_TOKEN")
                if HF_TOKEN:
                    headers["Authorization"] = f"Bearer {HF_TOKEN}"

                response = requests.get(image_url, headers=headers, timeout=10)
                response.raise_for_status()
                img = Image.open(BytesIO(response.content)).convert("RGB")

                img_processed = preprocess_image(img)
                embedding = DeepFace.represent(
                    img_path=img_processed,
                    model_name="Facenet",
                    enforce_detection=False
                )[0]["embedding"]

                database.append((f"image_{i + j}", img, embedding))
                print(f"✅ Procesada imagen {i + j + 1}/{len(dataset)}")

                del img_processed
                gc.collect()

            except Exception as e:
                print(f"❌ Error al procesar imagen {i + j}: {str(e)}")
                continue

    # Guardar al final si hay datos
    if database:
        print("💾 Guardando embeddings finales...")
        with open(EMBEDDINGS_FILE, "wb") as f:
            pickle.dump(database, f)

    return database

# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image: Image.Image):
    try:
        img_processed = preprocess_image(uploaded_image)
        query_embedding = DeepFace.represent(
            img_path=img_processed,
            model_name="Facenet",
            enforce_detection=False
        )[0]["embedding"]
        del img_processed
        gc.collect()
    except Exception as e:
        print(f"Error al procesar imagen de entrada: {str(e)}")
        return [], "⚠ No se detectó un rostro válido."

    similarities = []
    for name, db_img, embedding in database:
        dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
        sim_score = 1 / (1 + dist)
        similarities.append((sim_score, name, db_img))

    similarities.sort(reverse=True)
    top_matches = similarities[:5]

    gallery_items = []
    summary = ""
    for sim, name, img in top_matches:
        caption = f"{name} - Similitud: {sim:.2f}"
        gallery_items.append((np.array(img), caption))
        summary += caption + "\n"

    return gallery_items, summary

# 🚀 Iniciar aplicación
print("🚀 Iniciando aplicación...")
database = build_database()
print(f"✅ Base cargada con {len(database)} imágenes.")

# 🎛️ Gradio UI
demo = gr.Interface(
    fn=find_similar_faces,
    inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
    outputs=[
        gr.Gallery(label="📸 Rostros más similares"),
        gr.Textbox(label="🧠 Similitud", lines=6)
    ],
    title="🔍 Buscador de Rostros con DeepFace",
    description="Sube una imagen y se comparará contra los rostros del dataset `Segizu/facial-recognition` almacenado en Hugging Face Datasets."
)

demo.launch()