Spaces:
Build error
Build error
File size: 5,088 Bytes
7823cea 016fe76 7823cea 2592e48 b78ec6d 36f95d9 9bc27e3 2592e48 a36d980 016fe76 78e29c2 36f95d9 f5a1125 016fe76 8d88e43 ae0535c 8d88e43 37efbf7 6773de5 016fe76 37efbf7 016fe76 db84863 9fd2ec3 6773de5 97364cf 59cebaf fff17ea 7823cea 78e29c2 6773de5 36f95d9 e4617b7 6773de5 7823cea 97364cf e4617b7 8d88e43 e4617b7 8196356 016fe76 8196356 6c43e7e 016fe76 6c43e7e 8196356 f5a1125 016fe76 6c43e7e 016fe76 6c43e7e 016fe76 6c43e7e 016fe76 6c43e7e 016fe76 e4617b7 016fe76 e4617b7 7823cea fff17ea 97364cf 7823cea 59cebaf fff17ea 59cebaf fff17ea 9bc27e3 ff6b580 6773de5 bf687e5 7823cea fff17ea bf687e5 7823cea 36f95d9 7823cea bf687e5 6773de5 17df602 7823cea 2955be6 6773de5 7823cea 6773de5 bf687e5 016fe76 36f95d9 fff17ea 6773de5 fff17ea 016fe76 bf687e5 7823cea bf687e5 f134081 016fe76 bf687e5 7823cea 016fe76 bf687e5 8fed1b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset
import os
import pickle
from pathlib import Path
import gc
import requests
from io import BytesIO
# 📁 Directorio local para embeddings
EMBEDDINGS_DIR = Path("embeddings")
EMBEDDINGS_DIR.mkdir(exist_ok=True)
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
headers = {}
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
headers["Authorization"] = f"Bearer {HF_TOKEN}"
# ✅ Cargar el dataset remoto desde Hugging Face Datasets con metadata.csv
dataset = load_dataset(
"csv",
data_files="metadata.csv",
split="train",
column_names=["image"],
header=0 # 👈 asegúrate de que la primera fila se trate como encabezado
)
print("✅ Validación post-carga")
print(dataset[0])
print("Columnas:", dataset.column_names)
print("✅ Primeros ítems de validación:")
for i in range(5):
print(dataset[i])
# 🔄 Preprocesar imagen para DeepFace
def preprocess_image(img: Image.Image) -> np.ndarray:
img_rgb = img.convert("RGB")
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
return np.array(img_resized)
# 📦 Construir base de datos de embeddings
def build_database():
if EMBEDDINGS_FILE.exists():
print("📂 Cargando embeddings desde archivo...")
with open(EMBEDDINGS_FILE, "rb") as f:
return pickle.load(f)
print("🔄 Calculando embeddings...")
database = []
batch_size = 10
for i in range(0, len(dataset), batch_size):
batch = dataset[i:i + batch_size]
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
for j in range(len(batch["image"])):
try:
item = {"image": batch["image"][j]}
image_url = item["image"]
if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
print(f"⚠️ Saltando item {i + j} - URL inválida: {image_url}")
continue
# Autenticación para datasets privados
headers = {}
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
headers["Authorization"] = f"Bearer {HF_TOKEN}"
response = requests.get(image_url, headers=headers, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert("RGB")
img_processed = preprocess_image(img)
embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
database.append((f"image_{i + j}", img, embedding))
print(f"✅ Procesada imagen {i + j + 1}/{len(dataset)}")
del img_processed
gc.collect()
except Exception as e:
print(f"❌ Error al procesar imagen {i + j}: {str(e)}")
continue
# Guardar al final si hay datos
if database:
print("💾 Guardando embeddings finales...")
with open(EMBEDDINGS_FILE, "wb") as f:
pickle.dump(database, f)
return database
# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image: Image.Image):
try:
img_processed = preprocess_image(uploaded_image)
query_embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
del img_processed
gc.collect()
except Exception as e:
print(f"Error al procesar imagen de entrada: {str(e)}")
return [], "⚠ No se detectó un rostro válido."
similarities = []
for name, db_img, embedding in database:
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
sim_score = 1 / (1 + dist)
similarities.append((sim_score, name, db_img))
similarities.sort(reverse=True)
top_matches = similarities[:5]
gallery_items = []
summary = ""
for sim, name, img in top_matches:
caption = f"{name} - Similitud: {sim:.2f}"
gallery_items.append((np.array(img), caption))
summary += caption + "\n"
return gallery_items, summary
# 🚀 Iniciar aplicación
print("🚀 Iniciando aplicación...")
database = build_database()
print(f"✅ Base cargada con {len(database)} imágenes.")
# 🎛️ Gradio UI
demo = gr.Interface(
fn=find_similar_faces,
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
outputs=[
gr.Gallery(label="📸 Rostros más similares"),
gr.Textbox(label="🧠 Similitud", lines=6)
],
title="🔍 Buscador de Rostros con DeepFace",
description="Sube una imagen y se comparará contra los rostros del dataset `Segizu/facial-recognition` almacenado en Hugging Face Datasets."
)
demo.launch()
|