Spaces:
Running
on
Zero
Running
on
Zero
sd
Browse files
app.py
CHANGED
@@ -1,52 +1,53 @@
|
|
1 |
-
import os
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
from deepface import DeepFace
|
6 |
from datasets import load_dataset
|
7 |
|
8 |
-
#
|
9 |
dataset = load_dataset("Segizu/dataset_faces")
|
|
|
|
|
10 |
|
11 |
# Cargar embeddings de todas las imágenes del dataset
|
12 |
def build_database():
|
13 |
database = []
|
14 |
-
for
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
return database
|
23 |
|
24 |
-
# Inicializamos base de datos
|
25 |
database = build_database()
|
26 |
|
27 |
-
# Comparar imagen cargada con
|
28 |
def find_similar_faces(uploaded_image):
|
29 |
try:
|
30 |
-
|
31 |
-
query_representation = DeepFace.represent(img_path=
|
32 |
except:
|
33 |
return [], "⚠ No se detectó un rostro válido en la imagen."
|
34 |
|
35 |
similarities = []
|
36 |
-
for name,
|
37 |
distance = np.linalg.norm(np.array(query_representation) - np.array(rep))
|
38 |
-
similarity = 1 / (1 + distance) #
|
39 |
-
similarities.append((similarity, name,
|
40 |
|
41 |
-
# Ordenar por similitud
|
42 |
similarities.sort(reverse=True)
|
43 |
top_matches = similarities[:5]
|
44 |
|
45 |
-
# Formatear salida para gradio
|
46 |
gallery_items = []
|
47 |
text_summary = ""
|
48 |
-
for sim, name,
|
49 |
-
img = Image.open(path)
|
50 |
caption = f"{name} - Similitud: {sim:.2f}"
|
51 |
gallery_items.append({"image": img, "caption": caption})
|
52 |
text_summary += caption + "\n"
|
@@ -62,9 +63,7 @@ demo = gr.Interface(
|
|
62 |
gr.Textbox(label="🧠 Similitud", lines=6)
|
63 |
],
|
64 |
title="🔍 Buscador de Rostros con DeepFace",
|
65 |
-
description="Sube una imagen y
|
66 |
)
|
67 |
|
68 |
demo.launch()
|
69 |
-
|
70 |
-
|
|
|
|
|
1 |
import numpy as np
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from deepface import DeepFace
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
# Cargar el dataset de Hugging Face
|
8 |
dataset = load_dataset("Segizu/dataset_faces")
|
9 |
+
if "train" in dataset:
|
10 |
+
dataset = dataset["train"]
|
11 |
|
12 |
# Cargar embeddings de todas las imágenes del dataset
|
13 |
def build_database():
|
14 |
database = []
|
15 |
+
for i, item in enumerate(dataset):
|
16 |
+
try:
|
17 |
+
img = item["image"]
|
18 |
+
# Convertir a RGB y np.array
|
19 |
+
img_rgb = img.convert("RGB")
|
20 |
+
img_np = np.array(img_rgb)
|
21 |
+
# Obtener representación (embedding)
|
22 |
+
representation = DeepFace.represent(img_path=img_np, model_name="Facenet", enforce_detection=False)[0]["embedding"]
|
23 |
+
database.append((f"image_{i}", img_rgb, representation))
|
24 |
+
except Exception as e:
|
25 |
+
print(f"❌ No se pudo procesar imagen {i}: {e}")
|
26 |
return database
|
27 |
|
28 |
+
# Inicializamos base de datos de embeddings
|
29 |
database = build_database()
|
30 |
|
31 |
+
# Comparar imagen cargada con la base
|
32 |
def find_similar_faces(uploaded_image):
|
33 |
try:
|
34 |
+
img_np = np.array(uploaded_image.convert("RGB"))
|
35 |
+
query_representation = DeepFace.represent(img_path=img_np, model_name="Facenet", enforce_detection=False)[0]["embedding"]
|
36 |
except:
|
37 |
return [], "⚠ No se detectó un rostro válido en la imagen."
|
38 |
|
39 |
similarities = []
|
40 |
+
for name, db_img, rep in database:
|
41 |
distance = np.linalg.norm(np.array(query_representation) - np.array(rep))
|
42 |
+
similarity = 1 / (1 + distance) # Normalizado
|
43 |
+
similarities.append((similarity, name, db_img))
|
44 |
|
|
|
45 |
similarities.sort(reverse=True)
|
46 |
top_matches = similarities[:5]
|
47 |
|
|
|
48 |
gallery_items = []
|
49 |
text_summary = ""
|
50 |
+
for sim, name, img in top_matches:
|
|
|
51 |
caption = f"{name} - Similitud: {sim:.2f}"
|
52 |
gallery_items.append({"image": img, "caption": caption})
|
53 |
text_summary += caption + "\n"
|
|
|
63 |
gr.Textbox(label="🧠 Similitud", lines=6)
|
64 |
],
|
65 |
title="🔍 Buscador de Rostros con DeepFace",
|
66 |
+
description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/dataset_faces`)."
|
67 |
)
|
68 |
|
69 |
demo.launch()
|
|
|
|