Segizu commited on
Commit
17df602
·
1 Parent(s): 13cd42f
Files changed (1) hide show
  1. app.py +23 -24
app.py CHANGED
@@ -1,52 +1,53 @@
1
- import os
2
  import numpy as np
3
  from PIL import Image
4
  import gradio as gr
5
  from deepface import DeepFace
6
  from datasets import load_dataset
7
 
8
- # Cargamos el dataset sin aplicar formato especial
9
  dataset = load_dataset("Segizu/dataset_faces")
 
 
10
 
11
  # Cargar embeddings de todas las imágenes del dataset
12
  def build_database():
13
  database = []
14
- for filename in os.listdir(IMAGE_DIRECTORY):
15
- if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
16
- path = os.path.join(IMAGE_DIRECTORY, filename)
17
- try:
18
- representation = DeepFace.represent(img_path=path, model_name="Facenet")[0]["embedding"]
19
- database.append((filename, path, representation))
20
- except:
21
- print(f"❌ No se pudo procesar: {filename}")
 
 
 
22
  return database
23
 
24
- # Inicializamos base de datos
25
  database = build_database()
26
 
27
- # Comparar imagen cargada con las del dataset
28
  def find_similar_faces(uploaded_image):
29
  try:
30
- uploaded_image = np.array(uploaded_image)
31
- query_representation = DeepFace.represent(img_path=uploaded_image, model_name="Facenet")[0]["embedding"]
32
  except:
33
  return [], "⚠ No se detectó un rostro válido en la imagen."
34
 
35
  similarities = []
36
- for name, path, rep in database:
37
  distance = np.linalg.norm(np.array(query_representation) - np.array(rep))
38
- similarity = 1 / (1 + distance) # Normalizamos para que 1 = muy similar
39
- similarities.append((similarity, name, path))
40
 
41
- # Ordenar por similitud
42
  similarities.sort(reverse=True)
43
  top_matches = similarities[:5]
44
 
45
- # Formatear salida para gradio
46
  gallery_items = []
47
  text_summary = ""
48
- for sim, name, path in top_matches:
49
- img = Image.open(path)
50
  caption = f"{name} - Similitud: {sim:.2f}"
51
  gallery_items.append({"image": img, "caption": caption})
52
  text_summary += caption + "\n"
@@ -62,9 +63,7 @@ demo = gr.Interface(
62
  gr.Textbox(label="🧠 Similitud", lines=6)
63
  ],
64
  title="🔍 Buscador de Rostros con DeepFace",
65
- description="Sube una imagen y te mostrará los rostros más similares desde el directorio `dataset_faces/`."
66
  )
67
 
68
  demo.launch()
69
-
70
-
 
 
1
  import numpy as np
2
  from PIL import Image
3
  import gradio as gr
4
  from deepface import DeepFace
5
  from datasets import load_dataset
6
 
7
+ # Cargar el dataset de Hugging Face
8
  dataset = load_dataset("Segizu/dataset_faces")
9
+ if "train" in dataset:
10
+ dataset = dataset["train"]
11
 
12
  # Cargar embeddings de todas las imágenes del dataset
13
  def build_database():
14
  database = []
15
+ for i, item in enumerate(dataset):
16
+ try:
17
+ img = item["image"]
18
+ # Convertir a RGB y np.array
19
+ img_rgb = img.convert("RGB")
20
+ img_np = np.array(img_rgb)
21
+ # Obtener representación (embedding)
22
+ representation = DeepFace.represent(img_path=img_np, model_name="Facenet", enforce_detection=False)[0]["embedding"]
23
+ database.append((f"image_{i}", img_rgb, representation))
24
+ except Exception as e:
25
+ print(f"❌ No se pudo procesar imagen {i}: {e}")
26
  return database
27
 
28
+ # Inicializamos base de datos de embeddings
29
  database = build_database()
30
 
31
+ # Comparar imagen cargada con la base
32
  def find_similar_faces(uploaded_image):
33
  try:
34
+ img_np = np.array(uploaded_image.convert("RGB"))
35
+ query_representation = DeepFace.represent(img_path=img_np, model_name="Facenet", enforce_detection=False)[0]["embedding"]
36
  except:
37
  return [], "⚠ No se detectó un rostro válido en la imagen."
38
 
39
  similarities = []
40
+ for name, db_img, rep in database:
41
  distance = np.linalg.norm(np.array(query_representation) - np.array(rep))
42
+ similarity = 1 / (1 + distance) # Normalizado
43
+ similarities.append((similarity, name, db_img))
44
 
 
45
  similarities.sort(reverse=True)
46
  top_matches = similarities[:5]
47
 
 
48
  gallery_items = []
49
  text_summary = ""
50
+ for sim, name, img in top_matches:
 
51
  caption = f"{name} - Similitud: {sim:.2f}"
52
  gallery_items.append({"image": img, "caption": caption})
53
  text_summary += caption + "\n"
 
63
  gr.Textbox(label="🧠 Similitud", lines=6)
64
  ],
65
  title="🔍 Buscador de Rostros con DeepFace",
66
+ description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/dataset_faces`)."
67
  )
68
 
69
  demo.launch()