File size: 9,933 Bytes
6e3fd3f
3b03261
 
 
 
 
6e3fd3f
3b03261
ac55573
3b03261
 
 
6e3fd3f
 
 
b58c110
29901d7
3b03261
b58c110
 
 
 
ac55573
 
b58c110
ac55573
6e3fd3f
ac55573
 
6e3fd3f
ac55573
b58c110
 
6e3fd3f
b58c110
6e3fd3f
b58c110
 
 
 
3b03261
 
b58c110
 
 
ac55573
6e3fd3f
b58c110
6e3fd3f
ac55573
b58c110
 
a8054b3
b58c110
 
 
 
 
6e3fd3f
 
b58c110
ac55573
b58c110
 
 
 
 
 
 
 
 
 
 
ac55573
 
b58c110
 
 
 
 
 
 
6e3fd3f
b58c110
ac55573
b58c110
 
 
3b03261
6e3fd3f
b58c110
 
 
6e3fd3f
b58c110
 
 
6e3fd3f
2b307a5
6e3fd3f
b58c110
 
 
 
 
 
6e3fd3f
b58c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e3fd3f
 
b58c110
 
 
 
 
6e3fd3f
 
b58c110
 
 
ac55573
b58c110
6e3fd3f
 
b58c110
 
 
 
 
6e3fd3f
b58c110
6e3fd3f
 
 
b58c110
ac55573
6e3fd3f
b58c110
 
6e3fd3f
b58c110
 
6e3fd3f
b58c110
ac55573
3b03261
 
b58c110
3b03261
6e3fd3f
b58c110
 
6e3fd3f
b58c110
 
 
 
6e3fd3f
b58c110
 
 
 
 
 
 
6e3fd3f
b58c110
6e3fd3f
b58c110
 
 
 
 
6e3fd3f
b58c110
 
 
 
 
 
 
 
 
6e3fd3f
b58c110
 
 
 
6e3fd3f
3b03261
 
b58c110
3b03261
b58c110
6e3fd3f
b58c110
6e3fd3f
b58c110
 
 
 
 
 
6e3fd3f
b58c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8054b3
b58c110
6e3fd3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import cv2
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
from ultralytics import YOLO
import logging
import math

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global variables to store line coordinates and line equation
start_point = None
end_point = None
line_params = None  # Stores (slope, intercept) of the line

def extract_first_frame(stream_url):
    """
    Extracts the first available frame from the IP camera stream and returns it as a PIL image.
    """
    logger.info("Attempting to extract the first frame from the stream...")
    cap = cv2.VideoCapture(stream_url)
    if not cap.isOpened():
        logger.error("Error: Could not open stream.")
        return None, "Error: Could not open stream."

    ret, frame = cap.read()
    cap.release()

    if not ret:
        logger.error("Error: Could not read the first frame.")
        return None, "Error: Could not read the first frame."

    # Convert the frame to a PIL image
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    pil_image = Image.fromarray(frame_rgb)

    logger.info("First frame extracted successfully.")
    return pil_image, "First frame extracted successfully."

def update_line(image, evt: gr.SelectData):
    """
    Updates the line based on user interaction (click and drag).
    """
    global start_point, end_point, line_params

    # If it's the first click, set the start point and show it on the image
    if start_point is None:
        start_point = (evt.index[0], evt.index[1])

        # Draw the start point on the image
        draw = ImageDraw.Draw(image)
        draw.ellipse(
            (start_point[0] - 5, start_point[1] - 5, start_point[0] + 5, start_point[1] + 5),
            fill="blue", outline="blue"
        )

        return image, f"Line Coordinates:\nStart: {start_point}, End: None"

    # If it's the second click, set the end point and draw the line
    end_point = (evt.index[0], evt.index[1])

    # Calculate the slope (m) and intercept (b) of the line: y = mx + b
    if start_point[0] != end_point[0]:  # Avoid division by zero
        slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0])
        intercept = start_point[1] - slope * start_point[0]
        line_params = (slope, intercept, start_point, end_point)  # Store slope, intercept, and points
    else:
        # Vertical line (special case)
        line_params = (float('inf'), start_point[0], start_point, end_point)

    # Draw the line and end point on the image
    draw = ImageDraw.Draw(image)
    draw.line([start_point, end_point], fill="red", width=2)
    draw.ellipse(
        (end_point[0] - 5, end_point[1] - 5, end_point[0] + 5, end_point[1] + 5),
        fill="green", outline="green"
    )

    # Return the updated image and line info
    line_info = f"Line Coordinates:\nStart: {start_point}, End: {end_point}\nLine Equation: y = {line_params[0]:.2f}x + {line_params[1]:.2f}"

    # Reset the points for the next interaction
    start_point = None
    end_point = None

    return image, line_info

def reset_line():
    """
    Resets the line coordinates.
    """
    global start_point, end_point, line_params
    start_point = None
    end_point = None
    line_params = None
    return None, "Line reset. Click to draw a new line."

def is_object_crossing_line(box, line_params):
    """
    Determines if an object's bounding box is fully intersected by the user-drawn line.
    """
    _, _, line_start, line_end = line_params

    # Get the bounding box coordinates
    x1, y1, x2, y2 = box

    # Define the four edges of the bounding box
    box_edges = [
        ((x1, y1), (x2, y1)),  # Top edge
        ((x2, y1), (x2, y2)),  # Right edge
        ((x2, y2), (x1, y2)),  # Bottom edge
        ((x1, y2), (x1, y1))   # Left edge
    ]

    # Count the number of intersections between the line and the bounding box edges
    intersection_count = 0
    for edge_start, edge_end in box_edges:
        if intersect(line_start, line_end, edge_start, edge_end):
            intersection_count += 1

    # Only count the object if the line intersects the bounding box at least twice
    return intersection_count >= 2

def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
    """
    Draws the user-defined line on the frame.
    """
    _, _, start_point, end_point = line_params
    cv2.line(image, start_point, end_point, color, thickness)

def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
    """
    Processes the IP camera stream to count objects of the selected classes crossing the line.
    """
    global line_params

    errors = []

    if line_params is None:
        errors.append("Error: No line drawn. Please draw a line on the first frame.")
    if selected_classes is None or len(selected_classes) == 0:
        errors.append("Error: No classes selected. Please select at least one class to detect.")
    if stream_url is None or stream_url.strip() == "":
        errors.append("Error: No stream URL provided.")

    if errors:
        return None, "\n".join(errors)

    logger.info("Connecting to the IP camera stream...")
    cap = cv2.VideoCapture(stream_url)
    if not cap.isOpened():
        errors.append("Error: Could not open stream.")
        return None, "\n".join(errors)

    model = YOLO(model="yolov8n.pt")
    crossed_objects = set()  # Use a set to store unique object IDs (if available)

    logger.info("Starting to process the stream...")
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            errors.append("Error: Could not read frame from the stream.")
            break

        # Perform object detection (no tracking)
        results = model.predict(frame, conf=confidence_threshold)

        for result in results:
            boxes = result.boxes.xyxy.cpu().numpy()
            clss = result.boxes.cls.cpu().numpy()
            confs = result.boxes.conf.cpu().numpy()

            for box, cls, conf in zip(boxes, clss, confs):
                if conf >= confidence_threshold and model.names[int(cls)] in selected_classes:
                    # Check if the object crosses the line
                    if is_object_crossing_line(box, line_params):
                        # Use the bounding box center as a unique identifier
                        center = ((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)
                        crossed_objects.add(tuple(center))  # Add the center to the set

        # Visualize the results with bounding boxes
        annotated_frame = results[0].plot()

        # Draw the angled line on the frame
        draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)

        # Display the count on the frame
        count = len(crossed_objects)
        (text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)

        # Calculate the position for the middle of the top
        margin = 10  # Margin from the top
        x = (annotated_frame.shape[1] - text_width) // 2  # Center-align the text horizontally
        y = text_height + margin  # Top-align the text

        # Draw the black background rectangle
        cv2.rectangle(annotated_frame, (x - margin, y - text_height - margin), (x + text_width + margin, y + margin), (0, 0, 0), -1)

        # Draw the text
        cv2.putText(annotated_frame, f"COUNT: {count}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

        # Yield the annotated frame to Gradio
        yield annotated_frame, ""

    cap.release()
    logger.info("Stream processing completed.")

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
    gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")

    # Step 1: Enter the IP Camera Stream URL
    stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8", visible=False)

    # Step 1: Extract the first frame from the stream
    gr.Markdown("### Step 1: Click on the frame to draw a line, the objects crossing it would be counted in real-time.")
    first_frame, status = extract_first_frame(stream_url.value)
    if first_frame is None:
        gr.Markdown(f"**Error:** {status}")
    else:
        # Image component for displaying the first frame
        image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil")

        line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
        image.select(update_line, inputs=image, outputs=[image, line_info])

        # Step 2: Select classes to detect
        gr.Markdown("### Step 2: Select Classes to Detect")
        model = YOLO(model="yolov8n.pt")  # Load the model to get class names
        class_names = list(model.names.values())  # Get class names
        selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect")

        # Step 3: Adjust confidence threshold 
        gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)")
        confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold")

        # Process the stream
        process_button = gr.Button("Process Stream")

        # Output image for real-time frame rendering
        output_image = gr.Image(label="Processed Frame", streaming=True)

        # Error box to display warnings/errors
        error_box = gr.Textbox(label="Errors/Warnings", interactive=False)

        # Event listener for processing the video
        process_button.click(process_video, inputs=[confidence_threshold, selected_classes, stream_url], outputs=[output_image, error_box])

# Launch the interface
demo.launch(debug=True)