Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,523 Bytes
7c212f5 fabdc5a 7c212f5 f866cb0 378f95f f866cb0 378f95f f866cb0 af5f1ec f866cb0 fabdc5a f866cb0 70eea75 fabdc5a 7c212f5 70eea75 7c212f5 f866cb0 378f95f fabdc5a f866cb0 16c45c8 fabdc5a 7c212f5 378f95f ff06f7f fabdc5a 16c45c8 fabdc5a f866cb0 fabdc5a f866cb0 fabdc5a f866cb0 af5f1ec f866cb0 fabdc5a af5f1ec f866cb0 fabdc5a f866cb0 fabdc5a f866cb0 fabdc5a f866cb0 fabdc5a f866cb0 89fffa1 f866cb0 fabdc5a f866cb0 fabdc5a f866cb0 378f95f f866cb0 378f95f f866cb0 fabdc5a f866cb0 fabdc5a f866cb0 7c212f5 fabdc5a f866cb0 7c212f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gradio as gr
import numpy as np
import random
import spaces
import time
from diffusers import DiffusionPipeline, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0
from custom_pipeline import FluxWithCFGPipeline
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
# Device and model setup
dtype = torch.float16
pipe = FluxWithCFGPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
pipe.to("cuda")
pipe.load_lora_weights(
"hugovntr/flux-schnell-realism",
weight_name="schnell-realism_v2.3.safetensors",
adapter_name="better",
)
pipe.set_adapters(["better"], adapter_weights=[1.0])
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
pipe.unload_lora_weights()
# Correctly set memory format
pipe.transformer.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
# Conditionally enable xformers only for the transformer
if hasattr(pipe, "transformer") and torch.cuda.is_available():
try:
pipe.transformer.enable_xformers_memory_efficient_attention()
except Exception as e:
print(
"Warning: Could not enable xformers for the transformer due to the following error:"
)
print(e)
torch.cuda.empty_cache()
# Inference function
@spaces.GPU(duration=25)
def generate_image(
prompt,
seed=24,
width=DEFAULT_WIDTH,
height=DEFAULT_HEIGHT,
randomize_seed=False,
num_inference_steps=2,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(int(float(seed)))
start_time = time.time()
# Dynamically determine shapes based on input width/height
latents_shape = (1, 4, height // 8, width // 8)
prompt_embeds_shape = (
1,
pipe.transformer.text_encoder.config.max_position_embeddings,
pipe.transformer.text_encoder.config.hidden_size,
)
pooled_prompt_embeds_shape = (
1,
pipe.transformer.text_encoder.config.hidden_size,
)
# Only generate the last image in the sequence
img = pipe.generate_images(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
latents_shape=latents_shape,
prompt_embeds_shape=prompt_embeds_shape,
pooled_prompt_embeds_shape=pooled_prompt_embeds_shape
)
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
return img, seed, latency
# Example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cute white cat holding a sign that says hello world",
"an anime illustration of Steve Jobs",
"Create image of Modern house in minecraft style",
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
]
# --- Gradio UI ---
with gr.Blocks() as demo:
with gr.Column(elem_id="app-container"):
gr.Markdown("# π¨ Realtime FLUX Image Generator")
gr.Markdown(
"Generate stunning images in real-time with Modified Flux.Schnell pipeline."
)
gr.Markdown(
"<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>"
)
with gr.Row():
with gr.Column(scale=2.5):
result = gr.Image(
label="Generated Image", show_label=False, interactive=False
)
with gr.Column(scale=1):
prompt = gr.Text(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3,
show_label=False,
container=False,
)
generateBtn = gr.Button("πΌοΈ Generate Image")
enhanceBtn = gr.Button("π Enhance Image")
with gr.Column("Advanced Options"):
with gr.Row():
realtime = gr.Checkbox(
label="Realtime Toggler",
info="If TRUE then uses more GPU but create image in realtime.",
value=False,
)
latency = gr.Text(label="Latency")
with gr.Row():
seed = gr.Number(label="Seed", value=42)
randomize_seed = gr.Checkbox(
label="Randomize Seed", value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_WIDTH,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_HEIGHT,
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=4,
step=1,
value=DEFAULT_INFERENCE_STEPS,
)
with gr.Row():
gr.Markdown("### π Inspiration Gallery")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt],
outputs=[result, seed, latency],
cache_examples="lazy",
)
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None,
)
generateBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
api_name="RealtimeFlux",
queue=False
)
def update_ui(realtime_enabled):
return {
prompt: gr.update(interactive=True),
generateBtn: gr.update(visible=not realtime_enabled),
}
realtime.change(
fn=update_ui,
inputs=[realtime],
outputs=[prompt, generateBtn],
queue=False,
concurrency_limit=None,
)
def realtime_generation(*args):
if args[0]: # If realtime is enabled
img, seed, latency = generate_image(*args[1:])
return img, seed, latency
prompt.submit(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None,
)
for component in [prompt, width, height, num_inference_steps]:
component.input(
fn=realtime_generation,
inputs=[
realtime,
prompt,
seed,
width,
height,
randomize_seed,
num_inference_steps,
],
outputs=[result, seed, latency],
show_progress="hidden",
trigger_mode="always_last",
queue=True,
concurrency_limit=None,
)
# Launch the app
demo.launch() |