Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -67,74 +67,17 @@ def generate_image(
|
|
67 |
|
68 |
start_time = time.time()
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
)
|
74 |
-
static_prompt_embeds = torch.randn(
|
75 |
-
(2, 77, 768), dtype=dtype, device="cuda"
|
76 |
-
) # Adjust dimensions as needed
|
77 |
-
static_pooled_prompt_embeds = torch.randn(
|
78 |
-
(2, 768), dtype=dtype, device="cuda"
|
79 |
-
) # Adjust dimensions as needed
|
80 |
-
static_text_ids = torch.tensor([[[1, 2, 3]]], dtype=torch.int32, device="cuda")
|
81 |
-
static_latent_image_ids = torch.tensor([1], dtype=torch.int64, device="cuda")
|
82 |
-
static_timestep = torch.tensor([999], dtype=dtype, device="cuda")
|
83 |
-
|
84 |
-
# Warmup
|
85 |
-
s = torch.cuda.Stream()
|
86 |
-
s.wait_stream(torch.cuda.current_stream())
|
87 |
-
with torch.cuda.stream(s):
|
88 |
-
for _ in range(3):
|
89 |
-
_ = pipe.transformer(
|
90 |
-
hidden_states=static_latents,
|
91 |
-
timestep=static_timestep / 1000,
|
92 |
-
guidance=None,
|
93 |
-
pooled_projections=static_pooled_prompt_embeds,
|
94 |
-
encoder_hidden_states=static_prompt_embeds,
|
95 |
-
txt_ids=static_text_ids,
|
96 |
-
img_ids=static_latent_image_ids,
|
97 |
-
return_dict=False,
|
98 |
-
)
|
99 |
-
torch.cuda.current_stream().wait_stream(s)
|
100 |
-
|
101 |
-
# Capture CUDA Graph
|
102 |
-
g = torch.cuda.CUDAGraph()
|
103 |
-
with torch.cuda.graph(g):
|
104 |
-
static_noise_pred = pipe.transformer(
|
105 |
-
hidden_states=static_latents,
|
106 |
-
timestep=static_timestep / 1000,
|
107 |
-
guidance=None,
|
108 |
-
pooled_projections=static_pooled_prompt_embeds,
|
109 |
-
encoder_hidden_states=static_prompt_embeds,
|
110 |
-
txt_ids=static_text_ids,
|
111 |
-
img_ids=static_latent_image_ids,
|
112 |
-
return_dict=False,
|
113 |
-
)[0]
|
114 |
-
static_latents_out = pipe.scheduler.step(
|
115 |
-
static_noise_pred, static_timestep, static_latents, return_dict=False
|
116 |
-
)[0]
|
117 |
-
static_output = pipe._decode_latents_to_image(
|
118 |
-
static_latents_out, height, width, "pil"
|
119 |
-
)
|
120 |
-
|
121 |
-
# Graph-based generation function
|
122 |
-
def generate_with_graph(
|
123 |
-
latents,
|
124 |
-
prompt_embeds,
|
125 |
-
pooled_prompt_embeds,
|
126 |
-
text_ids,
|
127 |
-
latent_image_ids,
|
128 |
-
timestep,
|
129 |
-
):
|
130 |
-
static_latents.copy_(latents)
|
131 |
-
static_prompt_embeds.copy_(prompt_embeds)
|
132 |
-
static_pooled_prompt_embeds.copy_(pooled_prompt_embeds)
|
133 |
-
static_text_ids.copy_(text_ids)
|
134 |
-
static_latent_image_ids.copy_(latent_image_ids)
|
135 |
-
static_timestep.copy_(timestep)
|
136 |
-
g.replay()
|
137 |
-
return static_output
|
138 |
|
139 |
# Only generate the last image in the sequence
|
140 |
img = pipe.generate_images(
|
@@ -143,7 +86,9 @@ def generate_image(
|
|
143 |
height=height,
|
144 |
num_inference_steps=num_inference_steps,
|
145 |
generator=generator,
|
146 |
-
|
|
|
|
|
147 |
)
|
148 |
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
149 |
return img, seed, latency
|
|
|
67 |
|
68 |
start_time = time.time()
|
69 |
|
70 |
+
# Dynamically determine shapes based on input width/height
|
71 |
+
latents_shape = (1, 4, height // 8, width // 8)
|
72 |
+
prompt_embeds_shape = (
|
73 |
+
1,
|
74 |
+
pipe.transformer.text_encoder.config.max_position_embeddings,
|
75 |
+
pipe.transformer.text_encoder.config.hidden_size,
|
76 |
+
)
|
77 |
+
pooled_prompt_embeds_shape = (
|
78 |
+
1,
|
79 |
+
pipe.transformer.text_encoder.config.hidden_size,
|
80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Only generate the last image in the sequence
|
83 |
img = pipe.generate_images(
|
|
|
86 |
height=height,
|
87 |
num_inference_steps=num_inference_steps,
|
88 |
generator=generator,
|
89 |
+
latents_shape=latents_shape,
|
90 |
+
prompt_embeds_shape=prompt_embeds_shape,
|
91 |
+
pooled_prompt_embeds_shape=pooled_prompt_embeds_shape
|
92 |
)
|
93 |
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
94 |
return img, seed, latency
|