Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import spaces
|
5 |
-
import torch
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
9 |
from custom_pipeline import FluxWithCFGPipeline
|
10 |
-
|
11 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
12 |
|
13 |
# Constants
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -29,6 +30,11 @@ pipe.set_adapters(["better"], adapter_weights=[1.0])
|
|
29 |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
30 |
pipe.unload_lora_weights()
|
31 |
|
|
|
|
|
|
|
|
|
|
|
32 |
torch.cuda.empty_cache()
|
33 |
|
34 |
# Inference function
|
@@ -40,13 +46,68 @@ def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT,
|
|
40 |
|
41 |
start_time = time.time()
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Only generate the last image in the sequence
|
44 |
img = pipe.generate_images(
|
45 |
prompt=prompt,
|
46 |
width=width,
|
47 |
height=height,
|
48 |
num_inference_steps=num_inference_steps,
|
49 |
-
generator=generator
|
|
|
50 |
)
|
51 |
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
52 |
return img, seed, latency
|
@@ -138,9 +199,11 @@ with gr.Blocks() as demo:
|
|
138 |
concurrency_limit=None
|
139 |
)
|
140 |
|
141 |
-
def realtime_generation(*args):
|
142 |
if args[0]: # If realtime is enabled
|
143 |
-
|
|
|
|
|
144 |
|
145 |
prompt.submit(
|
146 |
fn=generate_image,
|
@@ -158,9 +221,9 @@ with gr.Blocks() as demo:
|
|
158 |
outputs=[result, seed, latency],
|
159 |
show_progress="hidden",
|
160 |
trigger_mode="always_last",
|
161 |
-
queue=
|
162 |
concurrency_limit=None
|
163 |
)
|
164 |
|
165 |
# Launch the app
|
166 |
-
demo.launch()
|
|
|
1 |
+
import torch
|
2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
3 |
+
torch.backends.cudnn.allow_tf32 = True
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import random
|
7 |
import spaces
|
|
|
8 |
import time
|
9 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
10 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
11 |
from custom_pipeline import FluxWithCFGPipeline
|
12 |
+
import asyncio
|
|
|
13 |
|
14 |
# Constants
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
30 |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
31 |
pipe.unload_lora_weights()
|
32 |
|
33 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
34 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
35 |
+
|
36 |
+
pipe.enable_xformers_memory_efficient_attention()
|
37 |
+
|
38 |
torch.cuda.empty_cache()
|
39 |
|
40 |
# Inference function
|
|
|
46 |
|
47 |
start_time = time.time()
|
48 |
|
49 |
+
# Initialize static inputs for CUDA graph
|
50 |
+
static_latents = torch.randn((1, 4, height // 8, width // 8), dtype=dtype, device="cuda")
|
51 |
+
static_prompt_embeds = torch.randn((2, 77, 768), dtype=dtype, device="cuda") # Adjust dimensions as needed
|
52 |
+
static_pooled_prompt_embeds = torch.randn((2, 768), dtype=dtype, device="cuda") # Adjust dimensions as needed
|
53 |
+
static_text_ids = torch.tensor([[[1, 2, 3]]], dtype=torch.int32, device="cuda")
|
54 |
+
static_latent_image_ids = torch.tensor([1], dtype=torch.int64, device="cuda")
|
55 |
+
static_timestep = torch.tensor([999], dtype=dtype, device="cuda")
|
56 |
+
|
57 |
+
# Warmup
|
58 |
+
s = torch.cuda.Stream()
|
59 |
+
s.wait_stream(torch.cuda.current_stream())
|
60 |
+
with torch.cuda.stream(s):
|
61 |
+
for _ in range(3):
|
62 |
+
_ = pipe.transformer(
|
63 |
+
hidden_states=static_latents,
|
64 |
+
timestep=static_timestep / 1000,
|
65 |
+
guidance=None,
|
66 |
+
pooled_projections=static_pooled_prompt_embeds,
|
67 |
+
encoder_hidden_states=static_prompt_embeds,
|
68 |
+
txt_ids=static_text_ids,
|
69 |
+
img_ids=static_latent_image_ids,
|
70 |
+
joint_attention_kwargs=pipe.joint_attention_kwargs,
|
71 |
+
return_dict=False,
|
72 |
+
)
|
73 |
+
torch.cuda.current_stream().wait_stream(s)
|
74 |
+
|
75 |
+
# Capture CUDA Graph
|
76 |
+
g = torch.cuda.CUDAGraph()
|
77 |
+
with torch.cuda.graph(g):
|
78 |
+
static_noise_pred = pipe.transformer(
|
79 |
+
hidden_states=static_latents,
|
80 |
+
timestep=static_timestep / 1000,
|
81 |
+
guidance=None,
|
82 |
+
pooled_projections=static_pooled_prompt_embeds,
|
83 |
+
encoder_hidden_states=static_prompt_embeds,
|
84 |
+
txt_ids=static_text_ids,
|
85 |
+
img_ids=static_latent_image_ids,
|
86 |
+
joint_attention_kwargs=pipe.joint_attention_kwargs,
|
87 |
+
return_dict=False,
|
88 |
+
)[0]
|
89 |
+
static_latents_out = pipe.scheduler.step(static_noise_pred, static_timestep, static_latents, return_dict=False)[0]
|
90 |
+
static_output = pipe._decode_latents_to_image(static_latents_out, height, width, "pil")
|
91 |
+
|
92 |
+
# Graph-based generation function
|
93 |
+
def generate_with_graph(latents, prompt_embeds, pooled_prompt_embeds, text_ids, latent_image_ids, timestep):
|
94 |
+
static_latents.copy_(latents)
|
95 |
+
static_prompt_embeds.copy_(prompt_embeds)
|
96 |
+
static_pooled_prompt_embeds.copy_(pooled_prompt_embeds)
|
97 |
+
static_text_ids.copy_(text_ids)
|
98 |
+
static_latent_image_ids.copy_(latent_image_ids)
|
99 |
+
static_timestep.copy_(timestep)
|
100 |
+
g.replay()
|
101 |
+
return static_output
|
102 |
+
|
103 |
# Only generate the last image in the sequence
|
104 |
img = pipe.generate_images(
|
105 |
prompt=prompt,
|
106 |
width=width,
|
107 |
height=height,
|
108 |
num_inference_steps=num_inference_steps,
|
109 |
+
generator=generator,
|
110 |
+
generate_with_graph=generate_with_graph
|
111 |
)
|
112 |
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
113 |
return img, seed, latency
|
|
|
199 |
concurrency_limit=None
|
200 |
)
|
201 |
|
202 |
+
async def realtime_generation(*args):
|
203 |
if args[0]: # If realtime is enabled
|
204 |
+
loop = asyncio.get_event_loop()
|
205 |
+
result = await loop.run_in_executor(None, next, generate_image(*args[1:]))
|
206 |
+
return result
|
207 |
|
208 |
prompt.submit(
|
209 |
fn=generate_image,
|
|
|
221 |
outputs=[result, seed, latency],
|
222 |
show_progress="hidden",
|
223 |
trigger_mode="always_last",
|
224 |
+
queue=True,
|
225 |
concurrency_limit=None
|
226 |
)
|
227 |
|
228 |
# Launch the app
|
229 |
+
demo.launch()
|