Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,8 @@ torch.backends.cudnn.allow_tf32 = True
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import random
|
8 |
-
import spaces
|
9 |
import time
|
10 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
11 |
-
from diffusers.models.attention_processor import AttnProcessor2_0
|
12 |
from custom_pipeline import FluxWithCFGPipeline
|
13 |
import asyncio
|
14 |
|
@@ -51,8 +49,9 @@ if hasattr(pipe, "transformer") and torch.cuda.is_available():
|
|
51 |
|
52 |
torch.cuda.empty_cache()
|
53 |
|
54 |
-
|
55 |
-
|
|
|
56 |
async def generate_image(
|
57 |
prompt,
|
58 |
seed=24,
|
@@ -119,8 +118,8 @@ async def generate_image(
|
|
119 |
static_latents_out, height, width, "pil"
|
120 |
)
|
121 |
|
122 |
-
# Graph-based generation function
|
123 |
-
|
124 |
latents,
|
125 |
prompt_embeds,
|
126 |
pooled_prompt_embeds,
|
@@ -137,8 +136,7 @@ async def generate_image(
|
|
137 |
g.replay()
|
138 |
return static_output
|
139 |
|
140 |
-
|
141 |
-
img = await pipe.generate_images(
|
142 |
prompt=prompt,
|
143 |
width=width,
|
144 |
height=height,
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import random
|
|
|
8 |
import time
|
9 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
|
|
10 |
from custom_pipeline import FluxWithCFGPipeline
|
11 |
import asyncio
|
12 |
|
|
|
49 |
|
50 |
torch.cuda.empty_cache()
|
51 |
|
52 |
+
|
53 |
+
|
54 |
+
# Inference function (async)
|
55 |
async def generate_image(
|
56 |
prompt,
|
57 |
seed=24,
|
|
|
118 |
static_latents_out, height, width, "pil"
|
119 |
)
|
120 |
|
121 |
+
# Graph-based generation function (synchronous)
|
122 |
+
def generate_with_graph(
|
123 |
latents,
|
124 |
prompt_embeds,
|
125 |
pooled_prompt_embeds,
|
|
|
136 |
g.replay()
|
137 |
return static_output
|
138 |
|
139 |
+
img = pipe.generate_images(
|
|
|
140 |
prompt=prompt,
|
141 |
width=width,
|
142 |
height=height,
|