Spaces:
Running
on
Zero
Running
on
Zero
Update custom_pipeline.py
Browse files- custom_pipeline.py +3 -6
custom_pipeline.py
CHANGED
@@ -48,7 +48,7 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
48 |
with progressively increasing resolution for faster generation.
|
49 |
"""
|
50 |
@torch.inference_mode()
|
51 |
-
def generate_images(
|
52 |
self,
|
53 |
prompt: Union[str, List[str]] = None,
|
54 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
@@ -64,7 +64,6 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
64 |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
65 |
output_type: Optional[str] = "pil",
|
66 |
return_dict: bool = True,
|
67 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
68 |
max_sequence_length: int = 300,
|
69 |
generate_with_graph = None
|
70 |
):
|
@@ -84,7 +83,6 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
84 |
)
|
85 |
|
86 |
self._guidance_scale = guidance_scale
|
87 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
88 |
self._interrupt = False
|
89 |
|
90 |
# 2. Define call parameters
|
@@ -92,7 +90,7 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
92 |
device = self._execution_device
|
93 |
|
94 |
# 3. Encode prompt
|
95 |
-
lora_scale =
|
96 |
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
97 |
prompt=prompt,
|
98 |
prompt_2=prompt_2,
|
@@ -140,7 +138,7 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
140 |
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
141 |
|
142 |
if generate_with_graph:
|
143 |
-
return generate_with_graph(latents, prompt_embeds, pooled_prompt_embeds, text_ids, latent_image_ids, timestep)
|
144 |
else:
|
145 |
noise_pred = self.transformer(
|
146 |
hidden_states=latents,
|
@@ -150,7 +148,6 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
150 |
encoder_hidden_states=prompt_embeds,
|
151 |
txt_ids=text_ids,
|
152 |
img_ids=latent_image_ids,
|
153 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
154 |
return_dict=False,
|
155 |
)[0]
|
156 |
|
|
|
48 |
with progressively increasing resolution for faster generation.
|
49 |
"""
|
50 |
@torch.inference_mode()
|
51 |
+
async def generate_images(
|
52 |
self,
|
53 |
prompt: Union[str, List[str]] = None,
|
54 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
|
64 |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
65 |
output_type: Optional[str] = "pil",
|
66 |
return_dict: bool = True,
|
|
|
67 |
max_sequence_length: int = 300,
|
68 |
generate_with_graph = None
|
69 |
):
|
|
|
83 |
)
|
84 |
|
85 |
self._guidance_scale = guidance_scale
|
|
|
86 |
self._interrupt = False
|
87 |
|
88 |
# 2. Define call parameters
|
|
|
90 |
device = self._execution_device
|
91 |
|
92 |
# 3. Encode prompt
|
93 |
+
lora_scale = None
|
94 |
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
95 |
prompt=prompt,
|
96 |
prompt_2=prompt_2,
|
|
|
138 |
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
139 |
|
140 |
if generate_with_graph:
|
141 |
+
return await generate_with_graph(latents, prompt_embeds, pooled_prompt_embeds, text_ids, latent_image_ids, timestep)
|
142 |
else:
|
143 |
noise_pred = self.transformer(
|
144 |
hidden_states=latents,
|
|
|
148 |
encoder_hidden_states=prompt_embeds,
|
149 |
txt_ids=text_ids,
|
150 |
img_ids=latent_image_ids,
|
|
|
151 |
return_dict=False,
|
152 |
)[0]
|
153 |
|