File size: 6,024 Bytes
f126604 d377221 f126604 7e095f4 ab172ce 60e4c3d dfff005 ab172ce f0898a3 f126604 7757822 ab172ce 7e095f4 dfff005 ab172ce f0898a3 ab172ce dfff005 f0898a3 60e4c3d f126604 ab172ce f126604 f0898a3 5620229 60e4c3d 5620229 ab172ce 5620229 ab172ce dfff005 f0898a3 6c1d81c f0898a3 ab172ce 6c1d81c dfff005 5620229 60e4c3d 4edd370 60e4c3d ab172ce 60e4c3d ab172ce dfff005 ab172ce 60e4c3d f0898a3 dfff005 ab172ce f0898a3 ab172ce dfff005 ab172ce f0898a3 ab172ce f0898a3 ab172ce dfff005 f0898a3 60e4c3d dfff005 60e4c3d ab172ce f126604 f0898a3 ab172ce dfff005 ab172ce dfff005 ab172ce dfff005 ab172ce dfff005 ab172ce f0898a3 ab172ce f0898a3 ab172ce bdcc052 ea3d9f9 ab172ce ea3d9f9 ab172ce ea3d9f9 ab172ce dfff005 ea3d9f9 ab172ce f126604 ab172ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
import sys
import json
import logging
import re
from datetime import datetime
from typing import List, Dict, Optional
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import asyncio
from txagent.txagent import TxAgent
from db.mongo import get_mongo_client
# Logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("TxAgentAPI")
# App
app = FastAPI(title="TxAgent API", version="2.1.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], allow_credentials=True,
allow_methods=["*"], allow_headers=["*"]
)
# Pydantic
class ChatRequest(BaseModel):
message: str
temperature: float = 0.7
max_new_tokens: int = 512
history: Optional[List[Dict]] = None
format: Optional[str] = "clean"
# Globals
agent = None
patients_collection = None
analysis_collection = None
# Helpers
def clean_text_response(text: str) -> str:
text = re.sub(r'\n\s*\n', '\n\n', text)
text = re.sub(r'[ ]+', ' ', text)
return text.replace("**", "").replace("__", "").strip()
def extract_section(text: str, heading: str) -> str:
try:
pattern = rf"{re.escape(heading)}:\s*\n(.*?)(?=\n[A-Z][^\n]*:|\Z)"
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
return match.group(1).strip() if match else ""
except Exception as e:
logger.error(f"Section extraction failed for heading '{heading}': {e}")
return ""
def structure_medical_response(text: str) -> Dict:
return {
"summary": extract_section(text, "Summarize the patient's medical history"),
"risks": extract_section(text, "Risks or Red Flags"),
"missed_issues": extract_section(text, "What the doctor might have missed"),
"recommendations": extract_section(text, "Suggested Clinical Actions")
}
def serialize_patient(patient: dict) -> dict:
patient_copy = patient.copy()
if "_id" in patient_copy:
patient_copy["_id"] = str(patient_copy["_id"])
return patient_copy
async def analyze_patient(patient: dict):
try:
serialized = serialize_patient(patient)
doc = json.dumps(serialized, indent=2)
logger.info(f"🧾 Analyzing patient: {serialized.get('fhir_id')}")
logger.debug(f"🧠 Data passed to TxAgent:\n{doc[:1000]}")
message = (
"You are a clinical decision support AI.\n\n"
"Given the patient document below:\n"
"1. Summarize the patient's medical history.\n"
"2. Identify risks or red flags.\n"
"3. Highlight missed diagnoses or treatments.\n"
"4. Suggest next clinical steps.\n"
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
)
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
structured = structure_medical_response(raw)
analysis_doc = {
"patient_id": serialized.get("fhir_id"),
"timestamp": datetime.utcnow(),
"summary": structured,
"raw": raw
}
await analysis_collection.update_one(
{"patient_id": serialized.get("fhir_id")},
{"$set": analysis_doc},
upsert=True
)
logger.info(f"✅ Stored analysis for patient {serialized.get('fhir_id')}")
except Exception as e:
logger.error(f"Error analyzing patient: {e}")
async def analyze_all_patients():
patients = await patients_collection.find({}).to_list(length=None)
for patient in patients:
await analyze_patient(patient)
await asyncio.sleep(0.1)
@app.on_event("startup")
async def startup_event():
global agent, patients_collection, analysis_collection
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
enable_finish=True,
enable_rag=False,
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=42
)
agent.chat_prompt = (
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations."
)
agent.init_model()
logger.info("✅ TxAgent initialized")
db = get_mongo_client()["cps_db"]
patients_collection = db["patients"]
analysis_collection = db["patient_analysis_results"]
logger.info("📡 Connected to MongoDB")
asyncio.create_task(analyze_all_patients())
@app.get("/status")
async def status():
return {
"status": "running",
"timestamp": datetime.utcnow().isoformat()
}
@app.post("/chat-stream")
async def chat_stream_endpoint(request: ChatRequest):
async def token_stream():
try:
conversation = [{"role": "system", "content": agent.chat_prompt}]
if request.history:
conversation.extend(request.history)
conversation.append({"role": "user", "content": request.message})
input_ids = agent.tokenizer.apply_chat_template(
conversation, add_generation_prompt=True, return_tensors="pt"
).to(agent.device)
output = agent.model.generate(
input_ids,
do_sample=True,
temperature=request.temperature,
max_new_tokens=request.max_new_tokens,
pad_token_id=agent.tokenizer.eos_token_id,
return_dict_in_generate=True
)
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
for chunk in text.split():
yield chunk + " "
await asyncio.sleep(0.05)
except Exception as e:
logger.error(f"Streaming error: {e}")
yield f"⚠️ Error: {e}"
return StreamingResponse(token_stream(), media_type="text/plain")
|