File size: 10,915 Bytes
25e2c05
a6968c2
 
 
 
973658c
41eb6bd
a6968c2
 
 
 
 
 
 
3dfd69d
a6968c2
 
3dfd69d
a6968c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eb6bd
a6968c2
 
41eb6bd
 
a6968c2
 
 
 
 
 
41eb6bd
 
a6968c2
41eb6bd
c3218a0
41eb6bd
a6968c2
 
3dfd69d
a6968c2
 
 
 
 
 
41eb6bd
 
 
 
 
 
 
 
 
 
 
 
a6968c2
41eb6bd
 
 
 
 
 
 
 
 
 
a6968c2
41eb6bd
a6968c2
 
 
 
 
818eb65
41eb6bd
 
 
 
 
 
818eb65
a6968c2
818eb65
a6968c2
04db5d2
 
 
 
 
 
a6968c2
818eb65
3dfd69d
 
 
41eb6bd
 
 
818eb65
 
 
 
 
 
 
 
 
 
 
 
 
 
3deb36c
41eb6bd
 
 
 
 
 
 
 
 
c3218a0
 
41eb6bd
 
 
 
 
 
818eb65
 
 
 
 
41eb6bd
ffd15e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dfd69d
ffd15e8
 
 
a6968c2
3deb36c
ffd15e8
41eb6bd
c3218a0
 
 
41eb6bd
 
818eb65
41eb6bd
 
 
 
 
 
 
 
c3218a0
41eb6bd
 
c3218a0
04db5d2
 
 
 
c3218a0
04db5d2
 
 
 
 
 
 
 
41eb6bd
 
 
 
818eb65
41eb6bd
 
 
 
 
a6968c2
fe67870
e24be23
818eb65
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages[:3]):
                text = page.extract_text() or ""
                text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")

def clean_response(text: str) -> str:
    text = sanitize_utf8(text)
    text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text).strip()
    return text

def init_agent():
    print("🔁 Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    print("✅ Agent Ready")
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze(message: str, history: List[dict], files: List):
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
            yield history, None

            extracted = ""
            file_hash_value = ""
            if files:
                with ThreadPoolExecutor(max_workers=4) as executor:
                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                    results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                    extracted = "\n".join(results)
                    file_hash_value = file_hash(files[0].name) if files else ""

            prompt = f"""
You are a clinical reasoning assistant. Analyze the following medical records with a focus on identifying potential clinical oversights. Your task is to provide a comprehensive and structured summary addressing the following:

1. **Potential Missed Diagnoses**:
   - Consider any contradictory or missing evidence regarding the patient’s history, symptoms, or test results.
   - Take into account psychiatric, neurological, infectious, autoimmune, and genetic conditions.
   - Consider family history, trauma history, and childhood developmental information.

2. **Flagged Medication Conflicts**:
   - Cross-check all prescribed medications for contraindications, interactions, or off-label use without justification.
   - Verify if any medications may worsen known diagnoses or contribute to adverse effects.

3. **Incomplete or Missing Assessments**:
   - Identify any domains of assessment that are completely missing or only superficially addressed (e.g., cognitive, psychiatric, social, family).
   - Point out gaps in documentation of prior medical history, substance use, or lab/imaging results.

4. **Abnormal Results Needing Urgent Follow-up**:
   - Extract and highlight lab results, imaging, behavioral observations, or legal history that warrant immediate reassessment or specialist referral.

Make the answer precise, evidence-based, and structured clearly under each heading. Avoid repeating input and remove tool-call formatting.

---

Medical Records Input (Truncated to 12k chars):

{extracted[:12000]}

---
Begin your analysis below:
"""


            try:
                if history and history[-1]["content"].startswith("⏳"):
                    history.pop()

                for chunk in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=2048,
                    max_token=4096,
                    call_agent=False,
                    conversation=[],
                ):
                    if chunk is None:
                        continue

                    if isinstance(chunk, list):
                        for m in chunk:
                            if hasattr(m, 'content') and m.content:
                                cleaned = clean_response(m.content)
                                if cleaned:
                                    history.append({"role": m.role, "content": cleaned})
                                    yield history, None
                    elif isinstance(chunk, str) and chunk.strip():
                        cleaned = clean_response(chunk)
                        if cleaned:
                            if history and history[-1]["role"] == "assistant":
                                history[-1]["content"] += cleaned
                            else:
                                history.append({"role": "assistant", "content": cleaned})
                            yield history, None

                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                print("🚨 ERROR:", e)
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    print("🚀 Launching app...")
    agent = init_agent()
    demo = create_ui(agent)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )