File size: 10,915 Bytes
25e2c05 a6968c2 973658c 41eb6bd a6968c2 3dfd69d a6968c2 3dfd69d a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 41eb6bd c3218a0 41eb6bd a6968c2 3dfd69d a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 818eb65 41eb6bd 818eb65 a6968c2 818eb65 a6968c2 04db5d2 a6968c2 818eb65 3dfd69d 41eb6bd 818eb65 3deb36c 41eb6bd c3218a0 41eb6bd 818eb65 41eb6bd ffd15e8 3dfd69d ffd15e8 a6968c2 3deb36c ffd15e8 41eb6bd c3218a0 41eb6bd 818eb65 41eb6bd c3218a0 41eb6bd c3218a0 04db5d2 c3218a0 04db5d2 41eb6bd 818eb65 41eb6bd a6968c2 fe67870 e24be23 818eb65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages[:3]):
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text).strip()
return text
def init_agent():
print("🔁 Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
print("✅ Agent Ready")
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
prompt = f"""
You are a clinical reasoning assistant. Analyze the following medical records with a focus on identifying potential clinical oversights. Your task is to provide a comprehensive and structured summary addressing the following:
1. **Potential Missed Diagnoses**:
- Consider any contradictory or missing evidence regarding the patient’s history, symptoms, or test results.
- Take into account psychiatric, neurological, infectious, autoimmune, and genetic conditions.
- Consider family history, trauma history, and childhood developmental information.
2. **Flagged Medication Conflicts**:
- Cross-check all prescribed medications for contraindications, interactions, or off-label use without justification.
- Verify if any medications may worsen known diagnoses or contribute to adverse effects.
3. **Incomplete or Missing Assessments**:
- Identify any domains of assessment that are completely missing or only superficially addressed (e.g., cognitive, psychiatric, social, family).
- Point out gaps in documentation of prior medical history, substance use, or lab/imaging results.
4. **Abnormal Results Needing Urgent Follow-up**:
- Extract and highlight lab results, imaging, behavioral observations, or legal history that warrant immediate reassessment or specialist referral.
Make the answer precise, evidence-based, and structured clearly under each heading. Avoid repeating input and remove tool-call formatting.
---
Medical Records Input (Truncated to 12k chars):
{extracted[:12000]}
---
Begin your analysis below:
"""
try:
if history and history[-1]["content"].startswith("⏳"):
history.pop()
for chunk in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=2048,
max_token=4096,
call_agent=False,
conversation=[],
):
if chunk is None:
continue
if isinstance(chunk, list):
for m in chunk:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned:
history.append({"role": m.role, "content": cleaned})
yield history, None
elif isinstance(chunk, str) and chunk.strip():
cleaned = clean_response(chunk)
if cleaned:
if history and history[-1]["role"] == "assistant":
history[-1]["content"] += cleaned
else:
history.append({"role": "assistant", "content": cleaned})
yield history, None
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
print("🚨 ERROR:", e)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("🚀 Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
|