Update app.py
Browse files
app.py
CHANGED
@@ -1,281 +1,18 @@
|
|
1 |
-
import sys
|
2 |
import os
|
3 |
-
import
|
4 |
-
import pdfplumber
|
5 |
-
import json
|
6 |
import gradio as gr
|
7 |
-
from
|
8 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
-
import hashlib
|
10 |
-
import shutil
|
11 |
-
import re
|
12 |
-
import psutil
|
13 |
-
import subprocess
|
14 |
-
import traceback
|
15 |
-
import torch
|
16 |
-
import copy
|
17 |
-
from gradio import ChatMessage
|
18 |
-
|
19 |
-
os.environ["VLLM_LOGGING_LEVEL"] = "DEBUG"
|
20 |
-
if not torch.cuda.is_available():
|
21 |
-
print("No GPU detected. Forcing CPU mode by setting CUDA_VISIBLE_DEVICES to an empty string.")
|
22 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
23 |
-
|
24 |
-
persistent_dir = "/data/hf_cache"
|
25 |
-
os.makedirs(persistent_dir, exist_ok=True)
|
26 |
-
|
27 |
-
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
28 |
-
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
29 |
-
file_cache_dir = os.path.join(persistent_dir, "cache")
|
30 |
-
report_dir = os.path.join(persistent_dir, "reports")
|
31 |
-
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
|
32 |
-
|
33 |
-
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
34 |
-
os.makedirs(directory, exist_ok=True)
|
35 |
-
|
36 |
-
os.environ["HF_HOME"] = model_cache_dir
|
37 |
-
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
38 |
-
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
39 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
40 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
41 |
-
|
42 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
43 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
44 |
-
sys.path.insert(0, src_path)
|
45 |
-
|
46 |
-
from txagent.txagent import TxAgent
|
47 |
-
|
48 |
-
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
49 |
-
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
|
50 |
-
|
51 |
-
def sanitize_utf8(text: str) -> str:
|
52 |
-
return text.encode("utf-8", "ignore").decode("utf-8")
|
53 |
-
|
54 |
-
def file_hash(path: str) -> str:
|
55 |
-
with open(path, "rb") as f:
|
56 |
-
return hashlib.md5(f.read()).hexdigest()
|
57 |
-
|
58 |
-
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
|
59 |
-
try:
|
60 |
-
text_chunks = []
|
61 |
-
with pdfplumber.open(file_path) as pdf:
|
62 |
-
for i, page in enumerate(pdf.pages[:3]):
|
63 |
-
text = page.extract_text() or ""
|
64 |
-
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
|
65 |
-
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
66 |
-
page_text = page.extract_text() or ""
|
67 |
-
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
|
68 |
-
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
|
69 |
-
return "\n\n".join(text_chunks)
|
70 |
-
except Exception as e:
|
71 |
-
print("PDF processing error:", str(e))
|
72 |
-
traceback.print_exc()
|
73 |
-
return str(e)
|
74 |
-
|
75 |
-
def convert_file_to_json(file_path: str, file_type: str) -> str:
|
76 |
-
try:
|
77 |
-
h = file_hash(file_path)
|
78 |
-
cache_path = os.path.join(file_cache_dir, f"{h}.json")
|
79 |
-
if os.path.exists(cache_path):
|
80 |
-
with open(cache_path, "r", encoding="utf-8") as f:
|
81 |
-
return f.read()
|
82 |
-
|
83 |
-
if file_type == "pdf":
|
84 |
-
text = extract_priority_pages(file_path)
|
85 |
-
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
86 |
-
elif file_type == "csv":
|
87 |
-
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
|
88 |
-
content = df.fillna("").astype(str).values.tolist()
|
89 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
90 |
-
elif file_type in ["xls", "xlsx"]:
|
91 |
-
try:
|
92 |
-
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
93 |
-
except Exception:
|
94 |
-
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
95 |
-
content = df.fillna("").astype(str).values.tolist()
|
96 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
97 |
-
else:
|
98 |
-
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
|
99 |
-
|
100 |
-
with open(cache_path, "w", encoding="utf-8") as f:
|
101 |
-
f.write(result)
|
102 |
-
return result
|
103 |
-
except Exception as e:
|
104 |
-
print("Error processing", file_path, str(e))
|
105 |
-
traceback.print_exc()
|
106 |
-
return json.dumps({"error": str(e)})
|
107 |
-
|
108 |
-
def log_system_usage(tag=""):
|
109 |
-
try:
|
110 |
-
cpu = psutil.cpu_percent(interval=1)
|
111 |
-
mem = psutil.virtual_memory()
|
112 |
-
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
113 |
-
result = subprocess.run(
|
114 |
-
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
115 |
-
capture_output=True, text=True
|
116 |
-
)
|
117 |
-
if result.returncode == 0:
|
118 |
-
used, total, util = result.stdout.strip().split(", ")
|
119 |
-
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
120 |
-
except Exception as e:
|
121 |
-
print(f"[{tag}] GPU/CPU monitor failed: {e}")
|
122 |
-
traceback.print_exc()
|
123 |
-
|
124 |
-
def init_agent():
|
125 |
-
try:
|
126 |
-
print("🔁 Initializing model...")
|
127 |
-
log_system_usage("Before Load")
|
128 |
-
default_tool_path = os.path.abspath("data/new_tool.json")
|
129 |
-
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
130 |
-
if not os.path.exists(target_tool_path):
|
131 |
-
shutil.copy(default_tool_path, target_tool_path)
|
132 |
-
|
133 |
-
agent = TxAgent(
|
134 |
-
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
135 |
-
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
136 |
-
tool_files_dict={"new_tool": target_tool_path},
|
137 |
-
enable_finish=True,
|
138 |
-
enable_rag=True,
|
139 |
-
enable_summary=False,
|
140 |
-
init_rag_num=0,
|
141 |
-
step_rag_num=8,
|
142 |
-
summary_mode='step',
|
143 |
-
summary_skip_last_k=0,
|
144 |
-
summary_context_length=None,
|
145 |
-
force_finish=True,
|
146 |
-
avoid_repeat=True,
|
147 |
-
seed=100,
|
148 |
-
enable_checker=True,
|
149 |
-
enable_chat=False,
|
150 |
-
additional_default_tools=[],
|
151 |
-
)
|
152 |
-
agent.init_model()
|
153 |
-
log_system_usage("After Load")
|
154 |
-
print("✅ Agent Ready")
|
155 |
-
return agent
|
156 |
-
except Exception as e:
|
157 |
-
print("❌ Error initializing agent:", str(e))
|
158 |
-
traceback.print_exc()
|
159 |
-
raise e
|
160 |
-
|
161 |
-
def create_ui(agent):
|
162 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
163 |
-
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
164 |
-
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
165 |
-
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
166 |
-
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
167 |
-
send_btn = gr.Button("Analyze", variant="primary")
|
168 |
-
download_output = gr.File(label="Download Full Report")
|
169 |
-
|
170 |
-
def analyze(message: str, history: List[List[str]], files: list):
|
171 |
-
try:
|
172 |
-
# Initialize with loading message
|
173 |
-
history.append([message, None])
|
174 |
-
yield history, None
|
175 |
-
|
176 |
-
extracted = ""
|
177 |
-
file_hash_value = ""
|
178 |
-
if files:
|
179 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
180 |
-
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
|
181 |
-
results = []
|
182 |
-
for future in as_completed(futures):
|
183 |
-
try:
|
184 |
-
res = future.result()
|
185 |
-
results.append(sanitize_utf8(res))
|
186 |
-
except Exception as e:
|
187 |
-
print("❌ Error in file processing:", str(e))
|
188 |
-
traceback.print_exc()
|
189 |
-
extracted = "\n".join(results)
|
190 |
-
file_hash_value = file_hash(files[0].name)
|
191 |
-
|
192 |
-
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
|
193 |
-
1. List potential missed diagnoses
|
194 |
-
2. Flag any medication conflicts
|
195 |
-
3. Note incomplete assessments
|
196 |
-
4. Highlight abnormal results needing follow-up
|
197 |
-
|
198 |
-
Medical Records:
|
199 |
-
{extracted[:8000]}
|
200 |
-
|
201 |
-
### Potential Oversights:
|
202 |
-
"""
|
203 |
-
print("🔎 Generated prompt:")
|
204 |
-
print(prompt)
|
205 |
-
|
206 |
-
# Remove loading message before streaming actual response
|
207 |
-
history[-1][1] = "⏳ Analyzing records..."
|
208 |
-
yield history, None
|
209 |
-
|
210 |
-
# Initialize conversation state
|
211 |
-
conversation = []
|
212 |
-
full_response = ""
|
213 |
-
|
214 |
-
# Stream responses from the agent
|
215 |
-
for chunk in agent.run_gradio_chat(
|
216 |
-
message=prompt,
|
217 |
-
history=[],
|
218 |
-
temperature=0.2,
|
219 |
-
max_new_tokens=2048,
|
220 |
-
max_token=4096,
|
221 |
-
call_agent=False,
|
222 |
-
conversation=conversation
|
223 |
-
):
|
224 |
-
if isinstance(chunk, str):
|
225 |
-
# Update the last message in history with the new chunk
|
226 |
-
full_response = chunk
|
227 |
-
history[-1][1] = full_response
|
228 |
-
yield history, None
|
229 |
-
elif isinstance(chunk, list):
|
230 |
-
# Handle tool calls or other structured responses
|
231 |
-
for item in chunk:
|
232 |
-
if isinstance(item, ChatMessage):
|
233 |
-
# Add tool call messages to history
|
234 |
-
if item.role == "assistant":
|
235 |
-
history.append([None, item.content])
|
236 |
-
else:
|
237 |
-
history.append([None, f"⚒️ {item.content}"])
|
238 |
-
yield history, None
|
239 |
-
|
240 |
-
# Final cleanup and report generation
|
241 |
-
full_response = full_response.replace('[TxAgent]', '').strip()
|
242 |
-
full_response = re.sub(r"\[TOOL_CALLS\].*?\n*", "", full_response, flags=re.DOTALL).strip()
|
243 |
-
|
244 |
-
# Update the final response
|
245 |
-
history[-1][1] = full_response
|
246 |
-
|
247 |
-
# Generate report file if we have files
|
248 |
-
report_path = None
|
249 |
-
if file_hash_value:
|
250 |
-
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
|
251 |
-
with open(report_path, "w", encoding="utf-8") as f:
|
252 |
-
f.write(full_response)
|
253 |
-
|
254 |
-
yield history, report_path if report_path and os.path.exists(report_path) else None
|
255 |
-
|
256 |
-
except Exception as e:
|
257 |
-
error_msg = f"❌ An error occurred: {str(e)}"
|
258 |
-
print(error_msg)
|
259 |
-
traceback.print_exc()
|
260 |
-
history[-1][1] = error_msg
|
261 |
-
yield history, None
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
return demo
|
266 |
|
267 |
if __name__ == "__main__":
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
share=False
|
278 |
-
)
|
279 |
-
except Exception as e:
|
280 |
-
print("❌ Fatal error during launch:", str(e))
|
281 |
-
traceback.print_exc()
|
|
|
|
|
1 |
import os
|
2 |
+
import sys
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
from multiprocessing import freeze_support
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
from ui.ui_core import create_ui
|
7 |
+
from backend.agent_instance import init_agent
|
|
|
8 |
|
9 |
if __name__ == "__main__":
|
10 |
+
freeze_support()
|
11 |
+
agent = init_agent()
|
12 |
+
demo = create_ui(agent)
|
13 |
+
demo.queue().launch(
|
14 |
+
server_name="0.0.0.0",
|
15 |
+
server_port=7860,
|
16 |
+
show_error=True,
|
17 |
+
share=True
|
18 |
+
)
|
|
|
|
|
|
|
|
|
|