File size: 16,992 Bytes
f75a23b f394b25 f75a23b f394b25 f75a23b f394b25 f75a23b e4d9325 f75a23b e4d9325 f75a23b a71a831 f75a23b a71a831 f75a23b 499e72e a71a831 f75a23b a71a831 499e72e 828effe e4d9325 a71a831 02a4d5e a71a831 e4d9325 02a4d5e f75a23b e4d9325 d88209d f75a23b e4d9325 f75a23b e4d9325 f75a23b e4d9325 f75a23b e4d9325 f75a23b a71a831 02a4d5e f75a23b 02a4d5e 12ddaba a71a831 f75a23b d88209d 870dc53 f75a23b 499e72e f75a23b 499e72e f75a23b e4d9325 f75a23b e4d9325 f75a23b e4d9325 f75a23b e4d9325 f75a23b e4d9325 f75a23b 2416301 f75a23b 870dc53 f75a23b 870dc53 a71a831 55e3db0 f394b25 02a4d5e f75a23b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import multiprocessing
from functools import partial
import time
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
"""Extract text from a range of PDF pages."""
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start_page:end_page]:
page_text = page.extract_text() or ""
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception:
return ""
def extract_all_pages(file_path: str, progress_callback=None) -> str:
"""Extract text from all pages of a PDF using parallel processing."""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
# Use 6 processes (adjust based on CPU cores)
num_processes = min(6, multiprocessing.cpu_count())
pages_per_process = max(1, total_pages // num_processes)
# Create page ranges for parallel processing
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
for i in range(num_processes)]
if ranges[-1][1] != total_pages:
ranges[-1] = (ranges[-1][0], total_pages)
# Process page ranges in parallel
with multiprocessing.Pool(processes=num_processes) as pool:
extract_func = partial(extract_page_range, file_path)
results = []
for idx, result in enumerate(pool.starmap(extract_func, ranges)):
results.append(result)
if progress_callback:
processed_pages = min((idx + 1) * pages_per_process, total_pages)
progress_callback(processed_pages, total_pages)
return "\n\n".join(filter(None, results))
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_all_pages(file_path, progress_callback)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
"""Clean TxAgent response to keep only markdown sections with valid findings."""
text = sanitize_utf8(text)
# Remove tool call artifacts, None, and reasoning
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
# Remove extra whitespace and non-markdown content
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text) # Keep markdown-relevant characters
# Extract markdown sections with valid findings
sections = []
current_section = None
lines = text.splitlines()
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
current_section = line
sections.append([current_section])
elif current_section and re.match(r"-\s*.+", line) and not re.match(r"-\s*No issues identified", line):
sections[-1].append(line)
# Combine only non-empty sections
cleaned = []
for section in sections:
if len(section) > 1: # Section has at least one finding
cleaned.append("\n".join(section))
text = "\n\n".join(cleaned).strip()
if not text:
text = "" # Return empty string if no valid findings
return text
def init_agent():
print("π Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
print("β
Agent Ready")
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "β³ Extracting text from files..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
# Progress callback for extraction
total_pages = 0
processed_pages = 0
def update_extraction_progress(current, total):
nonlocal processed_pages, total_pages
processed_pages = current
total_pages = total
animation = ["π", "π", "βοΈ", "π"][(int(time.time() * 2) % 4)]
history[-1] = {"role": "assistant", "content": f"Extracting text... {animation} Page {processed_pages}/{total_pages}"}
return history, None
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
history.pop() # Remove extraction message
history.append({"role": "assistant", "content": "β
Text extraction complete."})
yield history, None
# Split extracted text into chunks of ~6,000 characters
chunk_size = 6000
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
combined_response = ""
prompt_template = """
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format under these headings: Missed Diagnoses, Medication Conflicts, Incomplete Assessments, and Urgent Follow-up. For each finding, include:
- Clinical context (why the issue was missed or relevant details from the record).
- Potential risks if unaddressed (e.g., disease progression, adverse events).
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
Output ONLY the markdown-formatted findings, with bullet points under each heading. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found in a section, state "No issues identified." Ensure the output is specific to the provided text and avoids generic responses.
Example Output:
### Missed Diagnoses
- Elevated BP noted without diagnosis. Missed due to inconsistent visits. Risks: stroke. Recommend: BP monitoring, antihypertensives.
### Medication Conflicts
- No issues identified.
### Incomplete Assessments
- Chest pain not evaluated. Time constraints likely cause. Risks: cardiac issues. Recommend: ECG, stress test.
### Urgent Follow-up
- Abnormal creatinine not addressed. Delayed lab review. Risks: renal failure. Recommend: nephrology referral.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
### Missed Diagnoses
- ...
### Medication Conflicts
- ...
### Incomplete Assessments
- ...
### Urgent Follow-up
- ...
"""
try:
# Process each chunk and stream results in real-time
for chunk_idx, chunk in enumerate(chunks, 1):
# Update UI with chunk progress
animation = ["π", "π", "π§ ", "π"][(int(time.time() * 2) % 4)]
history.append({"role": "assistant", "content": f"Analyzing records... {animation} Chunk {chunk_idx}/{len(chunks)}"})
yield history, None
prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk[:4000]) # Truncate to avoid token limits
chunk_response = ""
for chunk_output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[],
):
if chunk_output is None:
continue
if isinstance(chunk_output, list):
for m in chunk_output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned and re.search(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", cleaned):
chunk_response += cleaned + "\n\n"
# Update UI with partial response
if history[-1]["content"].startswith("Analyzing"):
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
else:
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
yield history, None
elif isinstance(chunk_output, str) and chunk_output.strip():
cleaned = clean_response(chunk_output)
if cleaned and re.search(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", cleaned):
chunk_response += cleaned + "\n\n"
# Update UI with partial response
if history[-1]["content"].startswith("Analyzing"):
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
else:
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
yield history, None
# Append completed chunk response to combined response
if chunk_response:
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
else:
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
# Finalize UI with complete response
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
history[-1]["content"] = combined_response.strip()
else:
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
# Generate report file
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
print("π¨ ERROR:", e)
history.append({"role": "assistant", "content": f"β Error occurred: {str(e)}"})
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("π Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
) |