File size: 9,033 Bytes
1777737 3a20a5b 728def5 a834285 3a20a5b fb0ec4e 6763f7b 588868a 446fbec 841c3cb 0e7a2f6 dfe34bb 8505d49 fb0ec4e 41a5d42 5450461 1794bd1 5450461 1794bd1 41a5d42 5450461 13fb959 6763f7b 588868a a834285 dfe34bb 6763f7b a834285 2737da8 a834285 1794bd1 2737da8 1794bd1 2737da8 a834285 6763f7b a834285 ff7a915 4fb6b01 a834285 ff7a915 a834285 6763f7b dfe34bb a834285 dfe34bb d6a8733 fb0ec4e dfe34bb fb0ec4e d6a8733 fb0ec4e d6a8733 3a20a5b fb0ec4e 3a20a5b 774fd26 edb2500 28560cd dfe34bb 4e4aafc 13fb959 4e4aafc 1219574 dfe34bb 4a6ed35 7c14cc2 f0b8f72 9086c95 13fb959 dfe34bb 28560cd d6a8733 28560cd d6a8733 a834285 edb2500 6763f7b 9086c95 c87fc4e d6a8733 6763f7b 7c14cc2 6763f7b 9086c95 f0b8f72 9086c95 15df552 57d92c0 9086c95 f0b8f72 9086c95 88317c7 3a20a5b 57d92c0 88317c7 3a20a5b 28560cd 3ae42d2 3a20a5b 3492c23 f0b8f72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
# ✅ Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def clean_final_response(text: str) -> str:
cleaned = text.replace("[TOOL_CALLS]", "").strip()
responses = cleaned.split("[Final Analysis]")
if len(responses) <= 1:
return f"<div style='padding:1em;border:1px solid #ccc;border-radius:12px;color:#fff;background:#353F54;'><p>{cleaned}</p></div>"
panels = []
for i, section in enumerate(responses[1:], 1):
final = section.strip()
panels.append(
f"<div style='background:#2B2B2B;color:#E0E0E0;border-radius:12px;margin-bottom:1em;border:1px solid #888;'>"
f"<div style='font-size:1.1em;font-weight:bold;padding:0.75em;background:#3A3A3A;color:#fff;border-radius:12px 12px 0 0;'>🧠 Final Analysis #{i}</div>"
f"<div style='padding:1em;line-height:1.6;'>{final.replace(chr(10), '<br>')}</div>"
f"</div>"
)
return "".join(panels)
def file_hash(path):
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
cache_dir = os.path.join("cache")
os.makedirs(cache_dir, exist_ok=True)
h = file_hash(file_path)
cache_path = os.path.join(cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
elif file_type == "pdf":
with pdfplumber.open(file_path) as pdf:
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()})
open(cache_path, "w", encoding="utf-8").write(result)
return result
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
if df is None or df.empty:
return json.dumps({"warning": f"No data extracted from: {file_path}"})
df = df.fillna("")
content = df.astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
open(cache_path, "w", encoding="utf-8").write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
def chunk_text(text: str, max_tokens: int = 6000) -> List[str]:
chunks = []
words = text.split()
chunk = []
token_count = 0
for word in words:
token_count += len(word) // 4 + 1
if token_count > max_tokens:
chunks.append(" ".join(chunk))
chunk = [word]
token_count = len(word) // 4 + 1
else:
chunk.append(word)
if chunk:
chunks.append(" ".join(chunk))
return chunks
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
context = (
"You are an expert clinical AI assistant reviewing medical form or interview data. "
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
"Ensure the output is informative and helpful for improving patient care. "
"Do not hallucinate. Base the response only on the provided form content. "
"End with a section labeled '[Final Analysis]' where you summarize key findings the doctor may have missed."
)
try:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
yield history
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
for file in uploaded_files:
if not hasattr(file, 'name'):
continue
path = file.name
ext = path.split(".")[-1].lower()
json_text = convert_file_to_json(path, ext)
extracted_text += sanitize_utf8(json_text) + "\n"
chunks = chunk_text(extracted_text.strip())
def process_chunk(i, chunk):
chunked_prompt = (
f"{context}\n\n--- Uploaded File Content (Chunk {i+1}/{len(chunks)}) ---\n\n{chunk}\n\n"
f"--- End of Chunk ---\n\nNow begin your analysis:"
)
try:
generator = agent.run_gradio_chat(
message=chunked_prompt,
history=[],
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
result = ""
for update in generator:
if update is None:
print(f"[Warning] Empty response in chunk {i+1}")
continue
if isinstance(update, str):
result += update
elif isinstance(update, list):
for msg in update:
if hasattr(msg, 'content'):
result += msg.content
return result if result.strip() else f"[Chunk {i+1}] ⚠️ No response received."
except Exception as err:
print(f"[Error in chunk {i+1}] {err}")
return f"[Chunk {i+1}] ❌ Failed to process due to error."
with ThreadPoolExecutor(max_workers=min(8, len(chunks))) as executor:
futures = [executor.submit(process_chunk, i, chunk) for i, chunk in enumerate(chunks)]
results = [f.result() for f in as_completed(futures)]
full_response = "\n\n".join(results)
full_response = clean_final_response(full_response.strip())
history[-1] = {"role": "assistant", "content": full_response}
yield history
except Exception as chat_error:
print(f"Chat handling error: {chat_error}")
history[-1] = {"role": "assistant", "content": "❌ An error occurred while processing your request."}
yield history
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo |