Update ui/ui_core.py
Browse files- ui/ui_core.py +13 -19
ui/ui_core.py
CHANGED
@@ -1,30 +1,22 @@
|
|
1 |
-
|
2 |
import sys
|
3 |
import os
|
4 |
|
5 |
# ✅ Add src to Python path
|
6 |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
7 |
|
8 |
-
from txagent.txagent import TxAgent
|
9 |
import pandas as pd
|
10 |
import pdfplumber
|
11 |
import gradio as gr
|
12 |
|
13 |
-
|
14 |
-
def extract_structured_text_from_csv(file_path):
|
15 |
try:
|
16 |
df = pd.read_csv(file_path)
|
17 |
-
relevant_columns = [
|
18 |
-
"Booking Number", "Form Name", "Form Item",
|
19 |
-
"Item Response", "Interviewer", "Interview Date"
|
20 |
-
]
|
21 |
-
df = df[[col for col in relevant_columns if col in df.columns]]
|
22 |
return df.to_string(index=False)
|
23 |
except Exception as e:
|
24 |
return f"Error parsing CSV: {e}"
|
25 |
|
26 |
-
|
27 |
-
def extract_structured_text_from_pdf(file_path):
|
28 |
extracted = []
|
29 |
try:
|
30 |
with pdfplumber.open(file_path) as pdf:
|
@@ -38,10 +30,9 @@ def extract_structured_text_from_pdf(file_path):
|
|
38 |
except Exception as e:
|
39 |
return f"Error parsing PDF: {e}"
|
40 |
|
41 |
-
|
42 |
def create_ui(agent: TxAgent):
|
43 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
44 |
-
gr.Markdown("<h1 style='text-align: center;'
|
45 |
chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages")
|
46 |
|
47 |
file_upload = gr.File(label="Upload Medical File", file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv"], file_count="multiple")
|
@@ -51,9 +42,9 @@ def create_ui(agent: TxAgent):
|
|
51 |
|
52 |
def handle_chat(message, history, conversation, uploaded_files):
|
53 |
context = (
|
54 |
-
"You are a clinical AI reviewing
|
55 |
-
"
|
56 |
-
"
|
57 |
)
|
58 |
|
59 |
if uploaded_files:
|
@@ -61,9 +52,12 @@ def create_ui(agent: TxAgent):
|
|
61 |
for file in uploaded_files:
|
62 |
path = file.name
|
63 |
if path.endswith(".csv"):
|
64 |
-
extracted_text +=
|
65 |
elif path.endswith(".pdf"):
|
66 |
-
extracted_text +=
|
|
|
|
|
|
|
67 |
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
|
68 |
|
69 |
generator = agent.run_gradio_chat(
|
@@ -88,4 +82,4 @@ def create_ui(agent: TxAgent):
|
|
88 |
["Upload the files"],
|
89 |
], inputs=message_input)
|
90 |
|
91 |
-
return demo
|
|
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
|
4 |
# ✅ Add src to Python path
|
5 |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
6 |
|
7 |
+
from txagent.txagent import TxAgent
|
8 |
import pandas as pd
|
9 |
import pdfplumber
|
10 |
import gradio as gr
|
11 |
|
12 |
+
def extract_all_text_from_csv(file_path):
|
|
|
13 |
try:
|
14 |
df = pd.read_csv(file_path)
|
|
|
|
|
|
|
|
|
|
|
15 |
return df.to_string(index=False)
|
16 |
except Exception as e:
|
17 |
return f"Error parsing CSV: {e}"
|
18 |
|
19 |
+
def extract_all_text_from_pdf(file_path):
|
|
|
20 |
extracted = []
|
21 |
try:
|
22 |
with pdfplumber.open(file_path) as pdf:
|
|
|
30 |
except Exception as e:
|
31 |
return f"Error parsing PDF: {e}"
|
32 |
|
|
|
33 |
def create_ui(agent: TxAgent):
|
34 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
35 |
+
gr.Markdown("<h1 style='text-align: center;'>💊 TxAgent: Therapeutic Reasoning</h1>")
|
36 |
chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages")
|
37 |
|
38 |
file_upload = gr.File(label="Upload Medical File", file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv"], file_count="multiple")
|
|
|
42 |
|
43 |
def handle_chat(message, history, conversation, uploaded_files):
|
44 |
context = (
|
45 |
+
"You are a clinical AI reviewing medical interview or form data. "
|
46 |
+
"Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
|
47 |
+
"Don't answer yet — just reason."
|
48 |
)
|
49 |
|
50 |
if uploaded_files:
|
|
|
52 |
for file in uploaded_files:
|
53 |
path = file.name
|
54 |
if path.endswith(".csv"):
|
55 |
+
extracted_text += extract_all_text_from_csv(path) + "\n"
|
56 |
elif path.endswith(".pdf"):
|
57 |
+
extracted_text += extract_all_text_from_pdf(path) + "\n"
|
58 |
+
else:
|
59 |
+
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
|
60 |
+
|
61 |
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
|
62 |
|
63 |
generator = agent.run_gradio_chat(
|
|
|
82 |
["Upload the files"],
|
83 |
], inputs=message_input)
|
84 |
|
85 |
+
return demo
|