Update ui/ui_core.py
Browse files- ui/ui_core.py +28 -13
ui/ui_core.py
CHANGED
@@ -1,46 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
|
|
|
|
|
|
3 |
|
4 |
# ✅ Add src to Python path
|
5 |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
6 |
-
|
7 |
from txagent.txagent import TxAgent
|
8 |
-
import pandas as pd
|
9 |
-
import pdfplumber
|
10 |
-
import gradio as gr
|
11 |
|
12 |
-
|
|
|
13 |
try:
|
14 |
-
df = pd.read_csv(file_path)
|
|
|
|
|
15 |
return df.to_string(index=False)
|
16 |
except Exception as e:
|
17 |
return f"Error parsing CSV: {e}"
|
18 |
|
19 |
-
|
|
|
20 |
extracted = []
|
21 |
try:
|
22 |
with pdfplumber.open(file_path) as pdf:
|
23 |
-
|
|
|
24 |
tables = page.extract_tables()
|
25 |
for table in tables:
|
26 |
for row in table:
|
27 |
if any(row):
|
28 |
extracted.append("\t".join([cell or "" for cell in row]))
|
|
|
|
|
29 |
return "\n".join(extracted)
|
30 |
except Exception as e:
|
31 |
return f"Error parsing PDF: {e}"
|
32 |
|
|
|
33 |
def create_ui(agent: TxAgent):
|
34 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
35 |
gr.Markdown("<h1 style='text-align: center;'>💊 TxAgent: Therapeutic Reasoning</h1>")
|
36 |
chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages")
|
37 |
|
38 |
-
file_upload = gr.File(
|
|
|
|
|
|
|
|
|
39 |
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
|
40 |
send_button = gr.Button("Send", variant="primary")
|
41 |
conversation_state = gr.State([])
|
42 |
|
43 |
-
def handle_chat(message, history, conversation, uploaded_files):
|
44 |
context = (
|
45 |
"You are a clinical AI reviewing medical interview or form data. "
|
46 |
"Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
|
@@ -49,14 +60,18 @@ def create_ui(agent: TxAgent):
|
|
49 |
|
50 |
if uploaded_files:
|
51 |
extracted_text = ""
|
52 |
-
|
|
|
|
|
53 |
path = file.name
|
54 |
if path.endswith(".csv"):
|
55 |
-
extracted_text += extract_all_text_from_csv(path) + "\n"
|
56 |
elif path.endswith(".pdf"):
|
57 |
-
extracted_text += extract_all_text_from_pdf(path) + "\n"
|
58 |
else:
|
59 |
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
|
|
|
|
|
60 |
|
61 |
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
|
62 |
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
+
import pandas as pd
|
4 |
+
import pdfplumber
|
5 |
+
import gradio as gr
|
6 |
|
7 |
# ✅ Add src to Python path
|
8 |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
|
|
9 |
from txagent.txagent import TxAgent
|
|
|
|
|
|
|
10 |
|
11 |
+
|
12 |
+
def extract_all_text_from_csv(file_path, progress=None, index=0, total=1):
|
13 |
try:
|
14 |
+
df = pd.read_csv(file_path, low_memory=False)
|
15 |
+
if progress:
|
16 |
+
progress((index + 1) / total, desc=f"Processed CSV: {os.path.basename(file_path)}")
|
17 |
return df.to_string(index=False)
|
18 |
except Exception as e:
|
19 |
return f"Error parsing CSV: {e}"
|
20 |
|
21 |
+
|
22 |
+
def extract_all_text_from_pdf(file_path, progress=None, index=0, total=1):
|
23 |
extracted = []
|
24 |
try:
|
25 |
with pdfplumber.open(file_path) as pdf:
|
26 |
+
num_pages = len(pdf.pages)
|
27 |
+
for i, page in enumerate(pdf.pages):
|
28 |
tables = page.extract_tables()
|
29 |
for table in tables:
|
30 |
for row in table:
|
31 |
if any(row):
|
32 |
extracted.append("\t".join([cell or "" for cell in row]))
|
33 |
+
if progress:
|
34 |
+
progress((index + i / num_pages) / total, desc=f"Parsing PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
|
35 |
return "\n".join(extracted)
|
36 |
except Exception as e:
|
37 |
return f"Error parsing PDF: {e}"
|
38 |
|
39 |
+
|
40 |
def create_ui(agent: TxAgent):
|
41 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
42 |
gr.Markdown("<h1 style='text-align: center;'>💊 TxAgent: Therapeutic Reasoning</h1>")
|
43 |
chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages")
|
44 |
|
45 |
+
file_upload = gr.File(
|
46 |
+
label="Upload Medical File",
|
47 |
+
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv"],
|
48 |
+
file_count="multiple"
|
49 |
+
)
|
50 |
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
|
51 |
send_button = gr.Button("Send", variant="primary")
|
52 |
conversation_state = gr.State([])
|
53 |
|
54 |
+
def handle_chat(message, history, conversation, uploaded_files, progress=gr.Progress()):
|
55 |
context = (
|
56 |
"You are a clinical AI reviewing medical interview or form data. "
|
57 |
"Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
|
|
|
60 |
|
61 |
if uploaded_files:
|
62 |
extracted_text = ""
|
63 |
+
total_files = len(uploaded_files)
|
64 |
+
|
65 |
+
for index, file in enumerate(uploaded_files):
|
66 |
path = file.name
|
67 |
if path.endswith(".csv"):
|
68 |
+
extracted_text += extract_all_text_from_csv(path, progress, index, total_files) + "\n"
|
69 |
elif path.endswith(".pdf"):
|
70 |
+
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
|
71 |
else:
|
72 |
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
|
73 |
+
if progress:
|
74 |
+
progress((index + 1) / total_files, desc=f"Skipping unsupported file: {os.path.basename(path)}")
|
75 |
|
76 |
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
|
77 |
|