File size: 9,637 Bytes
f394b25 e4d9325 f394b25 e4d9325 f394b25 e4d9325 f394b25 e4d9325 a71a831 e4d9325 499e72e a71a831 e4d9325 a71a831 e4d9325 a71a831 499e72e 828effe e4d9325 a71a831 02a4d5e a71a831 e4d9325 02a4d5e e4d9325 d88209d e4d9325 a71a831 02a4d5e e4d9325 02a4d5e 12ddaba a71a831 e4d9325 d88209d 870dc53 e4d9325 499e72e e4d9325 499e72e e4d9325 2416301 870dc53 e4d9325 870dc53 a71a831 55e3db0 f394b25 02a4d5e e4d9325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import pandas as pd
import pdfplumber
import re
import gradio as gr
from typing import List, Dict
from concurrent.futures import ThreadPoolExecutor
import hashlib
import multiprocessing
from functools import partial
import logging
# Suppress pdfplumber CropBox warnings
logging.getLogger("pdfplumber").setLevel(logging.ERROR)
# Persistent directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
def sanitize_utf8(text: str) -> str:
"""Sanitize text to handle UTF-8 encoding issues."""
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
"""Generate MD5 hash of a file."""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
"""Extract text from a range of PDF pages."""
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start_page:end_page]:
page_text = page.extract_text() or ""
text_chunks.append(page_text.strip())
return "\n".join(text_chunks)
except Exception:
return ""
def extract_all_pages(file_path: str) -> str:
"""Extract text from all pages of a PDF using parallel processing."""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
# Use 4 processes (adjust based on CPU cores)
num_processes = min(4, multiprocessing.cpu_count())
pages_per_process = max(1, total_pages // num_processes)
# Create page ranges for parallel processing
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
for i in range(num_processes)]
if ranges[-1][1] != total_pages:
ranges[-1] = (ranges[-1][0], total_pages)
# Process page ranges in parallel
with multiprocessing.Pool(processes=num_processes) as pool:
extract_func = partial(extract_page_range, file_path)
results = pool.starmap(extract_func, ranges)
return "\n".join(filter(None, results))
except Exception:
return ""
def convert_file_to_text(file_path: str, file_type: str) -> str:
"""Convert supported file types to text, caching results."""
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.txt")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_all_pages(file_path)
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=True, on_bad_lines="skip")
text = " ".join(df.fillna("").astype(str).agg(" ".join, axis=1))
elif file_type in ["xls", "xlsx"]:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
text = " ".join(df.fillna("").astype(str).agg(" ".join, axis=1))
else:
text = ""
if text:
# Compress text by removing redundant whitespace
text = re.sub(r'\s+', ' ', text).strip()
with open(cache_path, "w", encoding="utf-8") as f:
f.write(text)
return text
except Exception:
return ""
def parse_analysis_response(raw_response: str) -> Dict[str, List[str]]:
"""Parse raw analysis response into structured sections using regex."""
sections = {
"Missed Diagnoses": [],
"Medication Conflicts": [],
"Incomplete Assessments": [],
"Urgent Follow-up": []
}
current_section = None
section_pattern = re.compile(r"^(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up):$", re.MULTILINE)
item_pattern = re.compile(r"^- .+$", re.MULTILINE)
for line in raw_response.splitlines():
line = line.strip()
if not line:
continue
if section_pattern.match(line):
current_section = line[:-1]
elif current_section and item_pattern.match(line):
sections[current_section].append(line)
return sections
def analyze_medical_records(extracted_text: str) -> str:
"""Analyze medical records and return structured response."""
# Split text into chunks to handle large inputs
chunk_size = 10000
chunks = [extracted_text[i:i + chunk_size] for i in range(0, len(extracted_text), chunk_size)]
# Placeholder for analysis (replace with model or rule-based logic)
raw_response_template = """
Missed Diagnoses:
- Undiagnosed hypertension despite elevated BP readings.
- Family history of diabetes not evaluated for prediabetes risk.
Medication Conflicts:
- SSRIs and NSAIDs detected, increasing GI bleeding risk.
Incomplete Assessments:
- No cardiac stress test despite chest pain.
Urgent Follow-up:
- Abnormal ECG requires cardiology referral.
"""
# Aggregate findings across chunks
all_sections = {
"Missed Diagnoses": set(),
"Medication Conflicts": set(),
"Incomplete Assessments": set(),
"Urgent Follow-up": set()
}
for chunk_idx, chunk in enumerate(chunks, 1):
# Simulate analysis per chunk (replace with real logic)
raw_response = raw_response_template
parsed = parse_analysis_response(raw_response)
for section, items in parsed.items():
all_sections[section].update(items)
# Format final response
response = ["### Clinical Oversight Analysis\n"]
has_findings = False
for section, items in all_sections.items():
response.append(f"#### {section}")
if items:
response.extend(sorted(items))
has_findings = True
else:
response.append("- None identified.")
response.append("")
response.append("### Summary")
summary = ("The analysis identified potential oversights in diagnosis, medication management, "
"assessments, and follow-up needs. Immediate action is recommended.") if has_findings else \
"No significant oversights identified. Continue monitoring."
response.append(summary)
return "\n".join(response)
def create_ui():
"""Create Gradio UI for clinical oversight analysis."""
def analyze(message: str, history: List[dict], files: List):
"""Handle analysis and return results."""
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Extracting text from files..."})
yield history, None
extracted_text = ""
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(convert_file_to_text, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [f.result() for f in futures]
extracted_text = "\n".join(sanitize_utf8(r) for r in results if r)
file_hash_value = file_hash(files[0].name) if files else ""
history.pop() # Remove "Extracting..."
history.append({"role": "assistant", "content": "⏳ Analyzing medical records..."})
yield history, None
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
try:
response = analyze_medical_records(extracted_text)
history.pop() # Remove "Analyzing..."
history.append({"role": "assistant", "content": response})
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
history.pop() # Remove "Analyzing..."
history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
yield history, None
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Report")
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("🚀 Launching app...")
try:
demo = create_ui()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch app: {str(e)}") |