File size: 22,325 Bytes
f394b25
 
 
 
 
 
d88209d
e12aa83
f394b25
 
 
 
6b4b480
f394b25
 
 
 
a71a831
d88209d
 
 
 
f394b25
a71a831
f394b25
 
 
d88209d
 
 
 
 
 
 
a71a831
 
 
 
 
 
 
 
 
 
 
 
d88209d
 
 
 
 
 
 
3cd3468
c10ba83
 
 
fcebf54
c10ba83
3cd3468
a71a831
 
 
d88209d
 
 
 
 
a71a831
d88209d
a71a831
 
 
d88209d
 
a71a831
d88209d
 
 
 
 
 
 
 
 
 
 
 
828effe
e12aa83
d88209d
a71a831
 
 
 
 
 
d88209d
 
 
 
f394b25
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
d88209d
a71a831
 
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
d88209d
 
 
 
a71a831
d88209d
 
 
 
 
 
 
8a7f6db
d88209d
 
 
a71a831
d88209d
a71a831
d88209d
 
 
 
 
 
 
 
 
 
 
a71a831
 
d88209d
a71a831
d88209d
a71a831
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
d88209d
a71a831
 
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27edaa
d88209d
 
 
 
 
 
 
 
 
 
 
 
8a7f6db
 
d88209d
 
 
 
 
 
 
 
8a7f6db
d88209d
 
 
 
 
8a7f6db
d88209d
 
 
 
 
 
 
 
 
 
 
8a7f6db
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
 
4cf6d2e
d88209d
 
 
 
4cf6d2e
d88209d
a71a831
d88209d
a71a831
d88209d
a71a831
 
d88209d
a71a831
 
 
 
 
e12aa83
 
 
 
 
 
 
 
 
a71a831
e12aa83
d88209d
a71a831
 
e12aa83
a71a831
e12aa83
d88209d
 
 
a71a831
 
 
 
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e12aa83
d88209d
4cf6d2e
a71a831
 
d88209d
a71a831
d88209d
f394b25
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
8a7f6db
e12aa83
d88209d
 
 
8a7f6db
d88209d
 
 
 
 
 
 
 
a71a831
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7f6db
a71a831
d88209d
 
 
 
 
 
 
4cf6d2e
a71a831
d88209d
a71a831
 
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
55e3db0
f394b25
 
d88209d
e12aa83
 
d88209d
 
 
 
f394b25
 
 
a71a831
f394b25
 
d88209d
 
 
f394b25
4cf6d2e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
from functools import lru_cache
import numpy as np
from difflib import SequenceMatcher

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_TOKENS = 1800
BATCH_SIZE = 2
MAX_WORKERS = 4
CHUNK_SIZE = 10  # For PDF processing

# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ.update({
    "HF_HOME": model_cache_dir,
    "TRANSFORMERS_CACHE": model_cache_dir,
    "VLLM_CACHE_DIR": vllm_cache_dir,
    "TOKENIZERS_PARALLELISM": "false",
    "CUDA_LAUNCH_BLOCKING": "1"
})

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)

# Initialize tokenizer for precise chunking (with caching)
@lru_cache(maxsize=1)
def get_tokenizer():
    return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")

def sanitize_utf8(text: str) -> str:
    """Optimized UTF-8 sanitization"""
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    """Optimized file hashing with buffer reading"""
    hash_md5 = hashlib.md5()
    with open(path, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

def extract_pdf_page(page) -> str:
    """Optimized single page extraction"""
    try:
        text = page.extract_text() or ""
        return f"=== Page {page.page_number} ===\n{text.strip()}"
    except Exception as e:
        logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
        return ""

def extract_all_pages(file_path: str, progress_callback=None) -> str:
    """Optimized PDF extraction with memory management"""
    try:
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
            if total_pages == 0:
                return ""

        results = []
        for chunk_start in range(0, total_pages, CHUNK_SIZE):
            chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
            
            with pdfplumber.open(file_path) as pdf:
                with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 4)) as executor:
                    futures = [executor.submit(extract_pdf_page, pdf.pages[i]) 
                             for i in range(chunk_start, chunk_end)]
                    
                    for future in as_completed(futures):
                        results.append(future.result())
                        
                    if progress_callback:
                        progress_callback(min(chunk_end, total_pages), total_pages)
            
            del pdf
            gc.collect()
        
        return "\n\n".join(filter(None, results))
    except Exception as e:
        logger.error(f"PDF processing error: {e}")
        return f"PDF processing error: {str(e)}"

def excel_to_json(file_path: str) -> List[Dict]:
    """Optimized Excel processing with chunking"""
    try:
        for engine in ['openpyxl', 'xlrd']:
            try:
                df = pd.read_excel(
                    file_path, 
                    engine=engine, 
                    header=None, 
                    dtype=str,
                    na_filter=False
                )
                return [{
                    "filename": os.path.basename(file_path),
                    "rows": df.values.tolist(),
                    "type": "excel"
                }]
            except Exception:
                continue
        raise Exception("No suitable Excel engine found")
    except Exception as e:
        logger.error(f"Excel processing error: {e}")
        return [{"error": f"Excel processing error: {str(e)}"}]

def csv_to_json(file_path: str) -> List[Dict]:
    """Optimized CSV processing with chunking"""
    try:
        chunks = []
        for chunk in pd.read_csv(
            file_path,
            header=None,
            dtype=str,
            encoding_errors='replace',
            on_bad_lines='skip',
            chunksize=10000,
            na_filter=False
        ):
            chunks.append(chunk)
        
        df = pd.concat(chunks) if chunks else pd.DataFrame()
        return [{
            "filename": os.path.basename(file_path),
            "rows": df.values.tolist(),
            "type": "csv"
        }]
    except Exception as e:
        logger.error(f"CSV processing error: {e}")
        return [{"error": f"CSV processing error: {str(e)}"}]

@lru_cache(maxsize=100)
def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
    """Cached file processing with memory optimization"""
    try:
        if file_type == "pdf":
            text = extract_all_pages(file_path)
            return [{
                "filename": os.path.basename(file_path),
                "content": text,
                "status": "initial",
                "type": "pdf"
            }]
        elif file_type in ["xls", "xlsx"]:
            return excel_to_json(file_path)
        elif file_type == "csv":
            return csv_to_json(file_path)
        else:
            return [{"error": f"Unsupported file type: {file_type}"}]
    except Exception as e:
        logger.error(f"Error processing {os.path.basename(file_path)}: {e}")
        return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]

def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
    """Optimized tokenization and chunking"""
    tokenizer = get_tokenizer()
    tokens = tokenizer.encode(text, add_special_tokens=False)
    return [
        tokenizer.decode(tokens[i:i + max_tokens])
        for i in range(0, len(tokens), max_tokens)
    ]

def log_system_usage(tag=""):
    """Optimized system monitoring"""
    try:
        cpu = psutil.cpu_percent(interval=0.5)
        mem = psutil.virtual_memory()
        logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        
        try:
            result = subprocess.run(
                ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
                capture_output=True, 
                text=True,
                timeout=2
            )
            if result.returncode == 0:
                used, total, util = result.stdout.strip().split(", ")
                logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
        except subprocess.TimeoutExpired:
            logger.warning(f"[{tag}] GPU monitoring timed out")
    except Exception as e:
        logger.error(f"[{tag}] Monitor failed: {e}")

def clean_response(text: str) -> str:
    """Enhanced response cleaning with aggressive deduplication"""
    if not text:
        return ""
    
    patterns = [
        (re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""),
        (re.compile(r"(The patient record excerpt provides|Patient record excerpt contains).*?(John Doe|general information).*?\.", re.IGNORECASE), ""),
        (re.compile(r"To (analyze|proceed).*?medications\.", re.IGNORECASE), ""),
        (re.compile(r"Since the previous attempts.*?\.", re.IGNORECASE), ""),
        (re.compile(r"I need to.*?results\.", re.IGNORECASE), ""),
        (re.compile(r"(Therefore, )?(Retrieving|I will start by retrieving) tools.*?\.", re.IGNORECASE), ""),
        (re.compile(r"This requires reviewing.*?\.", re.IGNORECASE), ""),
        (re.compile(r"Given the context, it is important to review.*?\.", re.IGNORECASE), ""),
        (re.compile(r"Final Analysis\s*", re.IGNORECASE), ""),
        (re.compile(r"Therefore, no missed diagnoses can be identified.*?\.", re.IGNORECASE), ""),
        (re.compile(r"\s+"), " "),
        (re.compile(r"[^\w\s\.\,\(\)\-]"), ""),
        (re.compile(r"(No missed diagnoses identified\.)\s*\1+", re.IGNORECASE), r"\1"),
    ]
    
    for pattern, repl in patterns:
        text = pattern.sub(repl, text)
    
    sentences = text.split(". ")
    unique_sentences = []
    seen = set()
    
    for s in sentences:
        if not s:
            continue
        is_unique = True
        for seen_s in seen:
            if SequenceMatcher(None, s.lower(), seen_s.lower()).ratio() > 0.9:
                is_unique = False
                break
        if is_unique:
            unique_sentences.append(s)
            seen.add(s)
    
    text = ". ".join(unique_sentences).strip()
    
    return text if text else "No missed diagnoses identified."

def summarize_findings(combined_response: str) -> str:
    """Enhanced findings summarization for a single, concise paragraph"""
    if not combined_response:
        return "No missed diagnoses were identified in the provided records."
    
    diagnosis_pattern = re.compile(r"-\s*(.+)$")
    section_pattern = re.compile(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)")
    no_issues_pattern = re.compile(r"No issues identified|No missed diagnoses identified", re.IGNORECASE)
    
    diagnoses = []
    current_section = None
    
    for line in combined_response.splitlines():
        line = line.strip()
        if not line:
            continue
        
        section_match = section_pattern.match(line)
        if section_match:
            current_section = "diagnoses" if section_match.group(1) == "Missed Diagnoses" else None
            continue
        
        if current_section == "diagnoses":
            diagnosis_match = diagnosis_pattern.match(line)
            if diagnosis_match and not no_issues_pattern.search(line):
                diagnosis = diagnosis_match.group(1).strip()
                if diagnosis:
                    diagnoses.append(diagnosis)
    
    medication_pattern = re.compile(r"medications includ(?:e|ing|ed) ([^\.]+)", re.IGNORECASE)
    evaluation_pattern = re.compile(r"psychiatric evaluation.*?mention of ([^\.]+)", re.IGNORECASE)
    
    for line in combined_response.splitlines():
        line = line.strip()
        if not line or no_issues_pattern.search(line):
            continue
        
        med_match = medication_pattern.search(line)
        if med_match:
            meds = med_match.group(1).strip()
            diagnoses.append(f"use of medications ({meds}), suggesting an undiagnosed psychiatric condition requiring urgent review")
        
        eval_match = evaluation_pattern.search(line)
        if eval_match:
            details = eval_match.group(1).strip()
            diagnoses.append(f"psychiatric evaluation noting {details}, indicating a potential missed psychiatric diagnosis requiring urgent review")
    
    if not diagnoses:
        return "No missed diagnoses were identified in the provided records."
    
    seen = set()
    unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
    
    summary = "The patient record indicates missed diagnoses including "
    summary += ", ".join(unique_diagnoses[:-1])
    summary += f", and {unique_diagnoses[-1]}" if len(unique_diagnoses) > 1 else unique_diagnoses[0]
    summary += ". These findings suggest potential oversights in the patient's medical evaluation and require urgent clinical review to prevent adverse outcomes."
    
    return summary

@lru_cache(maxsize=1)
def init_agent():
    """Cached agent initialization with memory optimization"""
    logger.info("Initializing model...")
    log_system_usage("Before Load")
    
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=False,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    
    log_system_usage("After Load")
    logger.info("Agent Ready")
    return agent

def create_ui(agent):
    """Optimized UI creation with pre-compiled templates"""
    PROMPT_TEMPLATE = """
Analyze the patient record excerpt for missed diagnoses, focusing ONLY on clinical findings such as symptoms, medications, or evaluation results provided in the excerpt. Provide a detailed, evidence-based analysis using all available tools (e.g., Tool_RAG, CallAgent) to identify potential oversights. Include specific findings (e.g., 'elevated blood pressure (160/95)'), their implications (e.g., 'may indicate untreated hypertension'), and recommend urgent review. Treat medications or psychiatric evaluations as potential missed diagnoses. Do NOT repeat non-clinical information (e.g., name, date of birth, allergies). If no clinical findings are present, state 'No missed diagnoses identified' in ONE sentence. Ignore other oversight categories (e.g., medication conflicts).
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(label="Analysis Summary", height=600, type="messages")
                msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
                send_btn = gr.Button("Analyze", variant="primary")
                file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
            
            with gr.Column(scale=1):
                final_summary = gr.Markdown(label="Missed Diagnoses Summary")
                download_output = gr.File(label="Download Detailed Report")
                progress_bar = gr.Progress()

        def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
            """Optimized analysis pipeline with quick summary and background report"""
            history.append({"role": "user", "content": message})
            yield history, None, ""

            extracted = []
            file_hash_value = ""
            
            if files:
                for f in files:
                    file_type = f.name.split(".")[-1].lower()
                    cache_key = f"{file_hash(f.name)}_{file_type}"
                    
                    if cache_key in cache:
                        extracted.extend(cache[cache_key])
                    else:
                        result = process_file_cached(f.name, file_type)
                        cache[cache_key] = result
                        extracted.extend(result)
                
                file_hash_value = file_hash(files[0].name) if files else ""
                history.append({"role": "assistant", "content": "✅ File processing complete"})
                yield history, None, ""

            text_content = "\n".join(json.dumps(item, ensure_ascii=False) for item in extracted)
            del extracted
            gc.collect()

            chunks = tokenize_and_chunk(text_content)
            del text_content
            gc.collect()
            
            combined_response = ""
            report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
            seen_responses = set()
            
            try:
                for batch_idx in range(0, len(chunks), BATCH_SIZE):
                    batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
                    
                    batch_prompts = [
                        PROMPT_TEMPLATE.format(
                            batch_idx + i + 1,
                            len(chunks),
                            chunk=chunk[:1800]
                        )
                        for i, chunk in enumerate(batch_chunks)
                    ]
                    
                    progress(batch_idx / len(chunks), 
                           desc=f"Processing batch {(batch_idx // BATCH_SIZE) + 1}/{(len(chunks) + BATCH_SIZE - 1) // BATCH_SIZE}")
                    
                    with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
                        quick_futures = {
                            executor.submit(
                                agent.run_quick_summary,
                                chunk, 0.2, 256, 1024
                            ): idx
                            for idx, chunk in enumerate(batch_chunks)
                        }
                        
                        for future in as_completed(quick_futures):
                            chunk_idx = quick_futures[future]
                            try:
                                quick_response = clean_response(future.result())
                                if quick_response and quick_response != "No missed diagnoses identified.":
                                    is_unique = True
                                    for seen_response in seen_responses:
                                        if SequenceMatcher(None, quick_response.lower(), seen_response.lower()).ratio() > 0.9:
                                            is_unique = False
                                            break
                                    if is_unique:
                                        combined_response += f"--- Quick Analysis for Chunk {batch_idx + chunk_idx + 1} ---\n{quick_response}\n"
                                        seen_responses.add(quick_response)
                                        history[-1] = {"role": "assistant", "content": combined_response.strip()}
                                        yield history, None, ""
                            finally:
                                del future
                                torch.cuda.empty_cache()
                                gc.collect()

                    # Start background detailed analysis
                    with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
                        detailed_futures = {
                            executor.submit(
                                agent.run_gradio_chat,
                                prompt, [], 0.2, 512, 2048, False, None, 3, None, 0, None, report_path
                            ): idx
                            for idx, prompt in enumerate(batch_prompts)
                        }
                        
                        for future in as_completed(detailed_futures):
                            chunk_idx = detailed_futures[future]
                            try:
                                for chunk_output in future.result():
                                    if isinstance(chunk_output, list):
                                        for msg in chunk_output:
                                            if isinstance(msg, ChatMessage) and msg.content:
                                                combined_response += clean_response(msg.content) + "\n"
                                                history[-1] = {"role": "assistant", "content": combined_response.strip()}
                                                yield history, report_path, ""
                            finally:
                                del future
                                torch.cuda.empty_cache()
                                gc.collect()

                summary = summarize_findings(combined_response)
                
                if report_path and os.path.exists(report_path):
                    history.append({"role": "assistant", "content": "Detailed report ready for download."})
                    yield history, report_path, summary
                else:
                    history.append({"role": "assistant", "content": "Detailed report still processing."})
                    yield history, None, summary

            except Exception as e:
                logger.error(f"Analysis error: {e}")
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None, f"Error occurred during analysis: {str(e)}"
            finally:
                torch.cuda.empty_cache()
                gc.collect()

        send_btn.click(
            analyze, 
            inputs=[msg_input, gr.State([]), file_upload], 
            outputs=[chatbot, download_output, final_summary]
        )
        msg_input.submit(
            analyze, 
            inputs=[msg_input, gr.State([]), file_upload], 
            outputs=[chatbot, download_output, final_summary]
        )
    
    return demo

if __name__ == "__main__":
    try:
        logger.info("Launching optimized app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(
            api_open=False,
            max_size=20
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        logger.error(f"Fatal error: {e}")
        raise
    finally:
        if torch.distributed.is_initialized():
            torch.distributed.destroy_process_group()