File size: 22,325 Bytes
f394b25 d88209d e12aa83 f394b25 6b4b480 f394b25 a71a831 d88209d f394b25 a71a831 f394b25 d88209d a71a831 d88209d 3cd3468 c10ba83 fcebf54 c10ba83 3cd3468 a71a831 d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d 828effe e12aa83 d88209d a71a831 d88209d f394b25 d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d 8a7f6db d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d e27edaa d88209d 8a7f6db d88209d 8a7f6db d88209d 8a7f6db d88209d 8a7f6db d88209d a71a831 4cf6d2e d88209d 4cf6d2e d88209d a71a831 d88209d a71a831 d88209d a71a831 d88209d a71a831 e12aa83 a71a831 e12aa83 d88209d a71a831 e12aa83 a71a831 e12aa83 d88209d a71a831 d88209d e12aa83 d88209d 4cf6d2e a71a831 d88209d a71a831 d88209d f394b25 d88209d 8a7f6db e12aa83 d88209d 8a7f6db d88209d a71a831 d88209d 8a7f6db a71a831 d88209d 4cf6d2e a71a831 d88209d a71a831 d88209d a71a831 55e3db0 f394b25 d88209d e12aa83 d88209d f394b25 a71a831 f394b25 d88209d f394b25 4cf6d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
from functools import lru_cache
import numpy as np
from difflib import SequenceMatcher
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_TOKENS = 1800
BATCH_SIZE = 2
MAX_WORKERS = 4
CHUNK_SIZE = 10 # For PDF processing
# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ.update({
"HF_HOME": model_cache_dir,
"TRANSFORMERS_CACHE": model_cache_dir,
"VLLM_CACHE_DIR": vllm_cache_dir,
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
# Initialize tokenizer for precise chunking (with caching)
@lru_cache(maxsize=1)
def get_tokenizer():
return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
def sanitize_utf8(text: str) -> str:
"""Optimized UTF-8 sanitization"""
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
"""Optimized file hashing with buffer reading"""
hash_md5 = hashlib.md5()
with open(path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def extract_pdf_page(page) -> str:
"""Optimized single page extraction"""
try:
text = page.extract_text() or ""
return f"=== Page {page.page_number} ===\n{text.strip()}"
except Exception as e:
logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
return ""
def extract_all_pages(file_path: str, progress_callback=None) -> str:
"""Optimized PDF extraction with memory management"""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
results = []
for chunk_start in range(0, total_pages, CHUNK_SIZE):
chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
with pdfplumber.open(file_path) as pdf:
with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 4)) as executor:
futures = [executor.submit(extract_pdf_page, pdf.pages[i])
for i in range(chunk_start, chunk_end)]
for future in as_completed(futures):
results.append(future.result())
if progress_callback:
progress_callback(min(chunk_end, total_pages), total_pages)
del pdf
gc.collect()
return "\n\n".join(filter(None, results))
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"PDF processing error: {str(e)}"
def excel_to_json(file_path: str) -> List[Dict]:
"""Optimized Excel processing with chunking"""
try:
for engine in ['openpyxl', 'xlrd']:
try:
df = pd.read_excel(
file_path,
engine=engine,
header=None,
dtype=str,
na_filter=False
)
return [{
"filename": os.path.basename(file_path),
"rows": df.values.tolist(),
"type": "excel"
}]
except Exception:
continue
raise Exception("No suitable Excel engine found")
except Exception as e:
logger.error(f"Excel processing error: {e}")
return [{"error": f"Excel processing error: {str(e)}"}]
def csv_to_json(file_path: str) -> List[Dict]:
"""Optimized CSV processing with chunking"""
try:
chunks = []
for chunk in pd.read_csv(
file_path,
header=None,
dtype=str,
encoding_errors='replace',
on_bad_lines='skip',
chunksize=10000,
na_filter=False
):
chunks.append(chunk)
df = pd.concat(chunks) if chunks else pd.DataFrame()
return [{
"filename": os.path.basename(file_path),
"rows": df.values.tolist(),
"type": "csv"
}]
except Exception as e:
logger.error(f"CSV processing error: {e}")
return [{"error": f"CSV processing error: {str(e)}"}]
@lru_cache(maxsize=100)
def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
"""Cached file processing with memory optimization"""
try:
if file_type == "pdf":
text = extract_all_pages(file_path)
return [{
"filename": os.path.basename(file_path),
"content": text,
"status": "initial",
"type": "pdf"
}]
elif file_type in ["xls", "xlsx"]:
return excel_to_json(file_path)
elif file_type == "csv":
return csv_to_json(file_path)
else:
return [{"error": f"Unsupported file type: {file_type}"}]
except Exception as e:
logger.error(f"Error processing {os.path.basename(file_path)}: {e}")
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
"""Optimized tokenization and chunking"""
tokenizer = get_tokenizer()
tokens = tokenizer.encode(text, add_special_tokens=False)
return [
tokenizer.decode(tokens[i:i + max_tokens])
for i in range(0, len(tokens), max_tokens)
]
def log_system_usage(tag=""):
"""Optimized system monitoring"""
try:
cpu = psutil.cpu_percent(interval=0.5)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
try:
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True,
text=True,
timeout=2
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except subprocess.TimeoutExpired:
logger.warning(f"[{tag}] GPU monitoring timed out")
except Exception as e:
logger.error(f"[{tag}] Monitor failed: {e}")
def clean_response(text: str) -> str:
"""Enhanced response cleaning with aggressive deduplication"""
if not text:
return ""
patterns = [
(re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""),
(re.compile(r"(The patient record excerpt provides|Patient record excerpt contains).*?(John Doe|general information).*?\.", re.IGNORECASE), ""),
(re.compile(r"To (analyze|proceed).*?medications\.", re.IGNORECASE), ""),
(re.compile(r"Since the previous attempts.*?\.", re.IGNORECASE), ""),
(re.compile(r"I need to.*?results\.", re.IGNORECASE), ""),
(re.compile(r"(Therefore, )?(Retrieving|I will start by retrieving) tools.*?\.", re.IGNORECASE), ""),
(re.compile(r"This requires reviewing.*?\.", re.IGNORECASE), ""),
(re.compile(r"Given the context, it is important to review.*?\.", re.IGNORECASE), ""),
(re.compile(r"Final Analysis\s*", re.IGNORECASE), ""),
(re.compile(r"Therefore, no missed diagnoses can be identified.*?\.", re.IGNORECASE), ""),
(re.compile(r"\s+"), " "),
(re.compile(r"[^\w\s\.\,\(\)\-]"), ""),
(re.compile(r"(No missed diagnoses identified\.)\s*\1+", re.IGNORECASE), r"\1"),
]
for pattern, repl in patterns:
text = pattern.sub(repl, text)
sentences = text.split(". ")
unique_sentences = []
seen = set()
for s in sentences:
if not s:
continue
is_unique = True
for seen_s in seen:
if SequenceMatcher(None, s.lower(), seen_s.lower()).ratio() > 0.9:
is_unique = False
break
if is_unique:
unique_sentences.append(s)
seen.add(s)
text = ". ".join(unique_sentences).strip()
return text if text else "No missed diagnoses identified."
def summarize_findings(combined_response: str) -> str:
"""Enhanced findings summarization for a single, concise paragraph"""
if not combined_response:
return "No missed diagnoses were identified in the provided records."
diagnosis_pattern = re.compile(r"-\s*(.+)$")
section_pattern = re.compile(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)")
no_issues_pattern = re.compile(r"No issues identified|No missed diagnoses identified", re.IGNORECASE)
diagnoses = []
current_section = None
for line in combined_response.splitlines():
line = line.strip()
if not line:
continue
section_match = section_pattern.match(line)
if section_match:
current_section = "diagnoses" if section_match.group(1) == "Missed Diagnoses" else None
continue
if current_section == "diagnoses":
diagnosis_match = diagnosis_pattern.match(line)
if diagnosis_match and not no_issues_pattern.search(line):
diagnosis = diagnosis_match.group(1).strip()
if diagnosis:
diagnoses.append(diagnosis)
medication_pattern = re.compile(r"medications includ(?:e|ing|ed) ([^\.]+)", re.IGNORECASE)
evaluation_pattern = re.compile(r"psychiatric evaluation.*?mention of ([^\.]+)", re.IGNORECASE)
for line in combined_response.splitlines():
line = line.strip()
if not line or no_issues_pattern.search(line):
continue
med_match = medication_pattern.search(line)
if med_match:
meds = med_match.group(1).strip()
diagnoses.append(f"use of medications ({meds}), suggesting an undiagnosed psychiatric condition requiring urgent review")
eval_match = evaluation_pattern.search(line)
if eval_match:
details = eval_match.group(1).strip()
diagnoses.append(f"psychiatric evaluation noting {details}, indicating a potential missed psychiatric diagnosis requiring urgent review")
if not diagnoses:
return "No missed diagnoses were identified in the provided records."
seen = set()
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
summary = "The patient record indicates missed diagnoses including "
summary += ", ".join(unique_diagnoses[:-1])
summary += f", and {unique_diagnoses[-1]}" if len(unique_diagnoses) > 1 else unique_diagnoses[0]
summary += ". These findings suggest potential oversights in the patient's medical evaluation and require urgent clinical review to prevent adverse outcomes."
return summary
@lru_cache(maxsize=1)
def init_agent():
"""Cached agent initialization with memory optimization"""
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent Ready")
return agent
def create_ui(agent):
"""Optimized UI creation with pre-compiled templates"""
PROMPT_TEMPLATE = """
Analyze the patient record excerpt for missed diagnoses, focusing ONLY on clinical findings such as symptoms, medications, or evaluation results provided in the excerpt. Provide a detailed, evidence-based analysis using all available tools (e.g., Tool_RAG, CallAgent) to identify potential oversights. Include specific findings (e.g., 'elevated blood pressure (160/95)'), their implications (e.g., 'may indicate untreated hypertension'), and recommend urgent review. Treat medications or psychiatric evaluations as potential missed diagnoses. Do NOT repeat non-clinical information (e.g., name, date of birth, allergies). If no clinical findings are present, state 'No missed diagnoses identified' in ONE sentence. Ignore other oversight categories (e.g., medication conflicts).
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Analysis Summary", height=600, type="messages")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
with gr.Column(scale=1):
final_summary = gr.Markdown(label="Missed Diagnoses Summary")
download_output = gr.File(label="Download Detailed Report")
progress_bar = gr.Progress()
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
"""Optimized analysis pipeline with quick summary and background report"""
history.append({"role": "user", "content": message})
yield history, None, ""
extracted = []
file_hash_value = ""
if files:
for f in files:
file_type = f.name.split(".")[-1].lower()
cache_key = f"{file_hash(f.name)}_{file_type}"
if cache_key in cache:
extracted.extend(cache[cache_key])
else:
result = process_file_cached(f.name, file_type)
cache[cache_key] = result
extracted.extend(result)
file_hash_value = file_hash(files[0].name) if files else ""
history.append({"role": "assistant", "content": "✅ File processing complete"})
yield history, None, ""
text_content = "\n".join(json.dumps(item, ensure_ascii=False) for item in extracted)
del extracted
gc.collect()
chunks = tokenize_and_chunk(text_content)
del text_content
gc.collect()
combined_response = ""
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
seen_responses = set()
try:
for batch_idx in range(0, len(chunks), BATCH_SIZE):
batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
batch_prompts = [
PROMPT_TEMPLATE.format(
batch_idx + i + 1,
len(chunks),
chunk=chunk[:1800]
)
for i, chunk in enumerate(batch_chunks)
]
progress(batch_idx / len(chunks),
desc=f"Processing batch {(batch_idx // BATCH_SIZE) + 1}/{(len(chunks) + BATCH_SIZE - 1) // BATCH_SIZE}")
with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
quick_futures = {
executor.submit(
agent.run_quick_summary,
chunk, 0.2, 256, 1024
): idx
for idx, chunk in enumerate(batch_chunks)
}
for future in as_completed(quick_futures):
chunk_idx = quick_futures[future]
try:
quick_response = clean_response(future.result())
if quick_response and quick_response != "No missed diagnoses identified.":
is_unique = True
for seen_response in seen_responses:
if SequenceMatcher(None, quick_response.lower(), seen_response.lower()).ratio() > 0.9:
is_unique = False
break
if is_unique:
combined_response += f"--- Quick Analysis for Chunk {batch_idx + chunk_idx + 1} ---\n{quick_response}\n"
seen_responses.add(quick_response)
history[-1] = {"role": "assistant", "content": combined_response.strip()}
yield history, None, ""
finally:
del future
torch.cuda.empty_cache()
gc.collect()
# Start background detailed analysis
with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
detailed_futures = {
executor.submit(
agent.run_gradio_chat,
prompt, [], 0.2, 512, 2048, False, None, 3, None, 0, None, report_path
): idx
for idx, prompt in enumerate(batch_prompts)
}
for future in as_completed(detailed_futures):
chunk_idx = detailed_futures[future]
try:
for chunk_output in future.result():
if isinstance(chunk_output, list):
for msg in chunk_output:
if isinstance(msg, ChatMessage) and msg.content:
combined_response += clean_response(msg.content) + "\n"
history[-1] = {"role": "assistant", "content": combined_response.strip()}
yield history, report_path, ""
finally:
del future
torch.cuda.empty_cache()
gc.collect()
summary = summarize_findings(combined_response)
if report_path and os.path.exists(report_path):
history.append({"role": "assistant", "content": "Detailed report ready for download."})
yield history, report_path, summary
else:
history.append({"role": "assistant", "content": "Detailed report still processing."})
yield history, None, summary
except Exception as e:
logger.error(f"Analysis error: {e}")
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None, f"Error occurred during analysis: {str(e)}"
finally:
torch.cuda.empty_cache()
gc.collect()
send_btn.click(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output, final_summary]
)
msg_input.submit(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output, final_summary]
)
return demo
if __name__ == "__main__":
try:
logger.info("Launching optimized app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
logger.error(f"Fatal error: {e}")
raise
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group() |