File size: 15,830 Bytes
f75a23b
f394b25
d184610
f75a23b
f394b25
d184610
f394b25
f75a23b
 
1c5bd8e
d8282f1
 
d184610
d8282f1
 
a71a831
 
f75a23b
 
 
a71a831
 
f75a23b
1c5bd8e
499e72e
a71a831
f75a23b
 
 
 
 
 
 
 
 
a71a831
d184610
a71a831
499e72e
828effe
1c5bd8e
d184610
afdc6ee
 
9a8092d
afdc6ee
d8282f1
d184610
1c5bd8e
 
 
 
 
d184610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8282f1
d184610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8282f1
d184610
 
 
 
 
d8282f1
 
d184610
 
 
 
 
 
 
d8282f1
befca65
d184610
 
 
 
1c5bd8e
d184610
 
1c5bd8e
d184610
 
 
 
 
 
 
e4d9325
d184610
1c5bd8e
d184610
12ddaba
d184610
 
e4d9325
d184610
 
e4d9325
1c5bd8e
d184610
 
 
 
1c5bd8e
befca65
f75a23b
d184610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f75a23b
d184610
f75a23b
 
d8282f1
f75a23b
9a8092d
d8282f1
d184610
 
 
 
 
 
 
 
 
 
 
 
d8282f1
d184610
 
 
f75a23b
 
d184610
 
 
d8282f1
 
 
 
 
 
 
 
d184610
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d184610
d8282f1
 
 
 
 
 
 
 
 
 
 
 
d184610
d8282f1
d184610
d8282f1
 
 
d184610
 
 
 
 
 
 
d8282f1
 
d184610
 
 
 
 
d8282f1
 
 
d184610
d8282f1
 
 
 
 
d184610
 
afdc6ee
d8282f1
 
afdc6ee
d184610
d8282f1
 
 
 
d184610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8282f1
d184610
 
 
 
 
 
 
 
d8282f1
d184610
d8282f1
afdc6ee
d8282f1
9a8092d
d8282f1
 
 
d184610
d8282f1
 
 
 
 
 
 
d184610
d8282f1
 
 
 
 
d184610
d8282f1
 
 
 
 
 
 
 
a71a831
55e3db0
f394b25
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
import markdown
from collections import defaultdict

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

def file_hash(path: str) -> str:
    """Generate MD5 hash of file contents"""
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def clean_response(text: str) -> str:
    """Clean and normalize text output"""
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    
    # Remove unwanted patterns and normalize whitespace
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def extract_medical_data(df: pd.DataFrame) -> Dict[str, Any]:
    """Extract and organize medical data from DataFrame"""
    medical_data = defaultdict(list)
    
    for _, row in df.iterrows():
        record = {
            'form_name': row.get('Form Name', ''),
            'form_item': row.get('Form Item', ''),
            'response': row.get('Item Response', ''),
            'date': row.get('Interview Date', ''),
            'interviewer': row.get('Interviewer', ''),
            'description': row.get('Description', '')
        }
        medical_data[row['Booking Number']].append(record)
    
    return medical_data

def identify_red_flags(records: List[Dict[str, Any]]) -> Dict[str, List[str]]:
    """Identify potential red flags in medical records"""
    red_flags = {
        'symptoms': defaultdict(list),
        'medications': defaultdict(list),
        'diagnoses': defaultdict(list),
        'vitals': defaultdict(list),
        'labs': defaultdict(list)
    }
    
    for record in records:
        form_name = record['form_name'].lower()
        item = record['form_item'].lower()
        response = record['response'].lower()
        
        # Symptom patterns
        if 'pain' in item or 'symptom' in form_name:
            if 'severe' in response or 'chronic' in response:
                red_flags['symptoms'][item].append(response)
        
        # Medication checks
        elif 'medication' in form_name or 'drug' in form_name:
            if 'interaction' in response or 'allergy' in response:
                red_flags['medications'][item].append(response)
        
        # Diagnosis inconsistencies
        elif 'diagnosis' in form_name:
            if 'rule out' in response or 'possible' in response:
                red_flags['diagnoses'][item].append(response)
        
        # Abnormal vitals
        elif 'vital' in form_name:
            try:
                value = float(re.search(r'\d+\.?\d*', response).group())
                if ('blood pressure' in item and value > 140) or \
                   ('heart rate' in item and (value < 50 or value > 100)) or \
                   ('temperature' in item and value > 38):
                    red_flags['vitals'][item].append(response)
            except:
                pass
        
        # Abnormal labs
        elif 'lab' in form_name or 'test' in form_name:
            if 'abnormal' in response or 'high' in response or 'low' in response:
                red_flags['labs'][item].append(response)
    
    return red_flags

def generate_analysis_prompt(booking: str, records: List[Dict[str, Any]], red_flags: Dict[str, Any]]) -> str:
    """Generate structured prompt for analysis"""
    records_text = "\n".join(
        f"- {r['form_name']}: {r['form_item']} = {r['response']} ({r['date']} by {r['interviewer']})\n  {r['description']}"
        for r in records
    )
    
    red_flags_text = "\n".join(
        f"### {category.capitalize()} Red Flags\n" + "\n".join(
            f"- {item}: {', '.join(responses)}"
            for item, responses in items.items()
        )
        for category, items in red_flags.items() if items
    )
    
    prompt = f"""
**Patient Booking Number**: {booking}

**Medical Records Summary**:
{records_text}

**Identified Red Flags**:
{red_flags_text if red_flags_text else "No obvious red flags detected"}

**Comprehensive Analysis Instructions**:
1. Review all medical data and red flags above
2. Identify any potential missed diagnoses based on symptoms, labs, and clinical findings
3. Check for medication conflicts or inappropriate prescriptions
4. Note any incomplete assessments or missing diagnostic workups
5. Flag any urgent follow-up needs or critical findings
6. Provide recommendations in clear, actionable terms

**Required Output Format**:
### Missed Diagnoses
- [List any conditions that may have been overlooked based on the data]

### Medication Issues
- [List any medication conflicts, inappropriate prescriptions, or missing medications]

### Assessment Gaps
- [List any incomplete assessments or missing diagnostic tests]

### Urgent Follow-up
- [List any findings requiring immediate attention]

### Clinical Recommendations
- [Provide specific recommendations for next steps]
"""
    return prompt

def parse_excel_to_prompts(file_path: str) -> List[Tuple[str, str]]:
    """Parse Excel file into analysis prompts with red flag detection"""
    try:
        xl = pd.ExcelFile(file_path)
        df = xl.parse(xl.sheet_names[0], header=0).fillna("")
        medical_data = extract_medical_data(df)
        
        prompts = []
        for booking, records in medical_data.items():
            red_flags = identify_red_flags(records)
            prompt = generate_analysis_prompt(booking, records, red_flags)
            prompts.append((booking, prompt))
        
        return prompts
    except Exception as e:
        raise ValueError(f"Error parsing Excel file: {str(e)}")

def init_agent():
    """Initialize the TxAgent with appropriate settings"""
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    return agent

def format_markdown(text: str) -> str:
    """Convert markdown text to HTML for better display"""
    return markdown.markdown(text, extensions=['fenced_code', 'tables'])

def create_ui(agent):
    """Create Gradio UI interface"""
    with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
        gr.Markdown("# 🏥 Clinical Oversight Assistant (Missed Diagnosis Detection)")
        
        with gr.Tabs():
            with gr.TabItem("Analysis"):
                with gr.Row():
                    # Left column - Inputs
                    with gr.Column(scale=1):
                        file_upload = gr.File(
                            label="Upload Excel File",
                            file_types=[".xlsx"], 
                            file_count="single",
                            interactive=True
                        )
                        msg_input = gr.Textbox(
                            label="Additional Instructions",
                            placeholder="Add any specific analysis requests...",
                            lines=3
                        )
                        with gr.Row():
                            clear_btn = gr.Button("Clear", variant="secondary")
                            send_btn = gr.Button("Analyze", variant="primary")
                    
                    # Right column - Outputs
                    with gr.Column(scale=2):
                        chatbot = gr.Chatbot(
                            label="Analysis Results",
                            height=600,
                            bubble_full_width=False,
                            show_copy_button=True,
                            render_markdown=True
                        )
                        download_output = gr.File(
                            label="Download Full Report",
                            interactive=False
                        )
            
            with gr.TabItem("Instructions"):
                gr.Markdown("""
                ## How to Use This Tool
                
                1. **Upload Excel File**: Select your patient records Excel file
                2. **Add Instructions** (Optional): Provide any specific analysis requests
                3. **Click Analyze**: The system will process each patient record
                4. **Review Results**: Analysis appears in the chat window
                5. **Download Report**: Get a full text report of all findings
                
                ### Excel File Requirements
                Your Excel file must contain these columns:
                - Booking Number (patient identifier)
                - Form Name (type of medical form)
                - Form Item (specific field name)
                - Item Response (patient response or value)
                - Interview Date (date of recording)
                - Interviewer (who recorded the data)
                - Description (additional notes)
                
                ### Analysis Includes
                - **Missed diagnoses**: Potential conditions not identified
                - **Medication issues**: Conflicts, side effects, inappropriate prescriptions
                - **Assessment gaps**: Missing tests or incomplete evaluations
                - **Urgent follow-up**: Critical findings needing immediate attention
                - **Clinical recommendations**: Actionable next steps
                """)
        
        def format_message(role: str, content: str) -> Tuple[str, str]:
            """Format messages for the chatbot in (user, bot) format"""
            if role == "user":
                return (content, None)
            else:
                return (None, content)
        
        def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
            """Main analysis function"""
            if not file:
                raise gr.Error("Please upload an Excel file first")
            
            try:
                # Initialize chat history with user message
                new_history = chat_history + [format_message("user", message)]
                new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
                yield new_history, None
                
                prompts = parse_excel_to_prompts(file.name)
                full_output = ""
                
                for idx, (booking, prompt) in enumerate(prompts, 1):
                    chunk_output = ""
                    try:
                        for result in agent.run_gradio_chat(
                            message=prompt,
                            history=[],
                            temperature=0.2,
                            max_new_tokens=1024,
                            max_token=4096,
                            call_agent=False,
                            conversation=[],
                        ):
                            if isinstance(result, list):
                                for r in result:
                                    if hasattr(r, 'content') and r.content:
                                        cleaned = clean_response(r.content)
                                        chunk_output += cleaned + "\n"
                            elif isinstance(result, str):
                                cleaned = clean_response(result)
                                chunk_output += cleaned + "\n"
                            
                            if chunk_output:
                                output = f"## Patient Booking: {booking}\n{chunk_output.strip()}\n"
                                new_history[-1] = format_message("assistant", output)
                                yield new_history, None
                                
                    except Exception as e:
                        error_msg = f"⚠️ Error processing booking {booking}: {str(e)}"
                        new_history.append(format_message("assistant", error_msg))
                        yield new_history, None
                        continue
                        
                    if chunk_output:
                        output = f"## Patient Booking: {booking}\n{chunk_output.strip()}\n"
                        new_history.append(format_message("assistant", output))
                        full_output += output + "\n"
                        yield new_history, None
                
                # Save report
                file_hash_value = file_hash(file.name)
                timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
                report_path = os.path.join(report_dir, f"{file_hash_value}_{timestamp}_report.md")
                
                with open(report_path, "w", encoding="utf-8") as f:
                    f.write("# Clinical Oversight Analysis Report\n\n")
                    f.write(f"**Generated on**: {timestamp}\n\n")
                    f.write(f"**Source file**: {file.name}\n\n")
                    f.write(full_output)
                
                yield new_history, report_path if os.path.exists(report_path) else None
                
            except Exception as e:
                new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
                yield new_history, None
                raise gr.Error(f"Analysis failed: {str(e)}")
        
        def clear_chat():
            """Clear chat history and outputs"""
            return [], None
        
        # Event handlers
        send_btn.click(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output],
            api_name="analyze"
        )
        
        msg_input.submit(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output]
        )
        
        clear_btn.click(
            clear_chat,
            inputs=[],
            outputs=[chatbot, download_output]
        )
    
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        
        demo.queue(
            api_open=False,
            max_size=20
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        print(f"Failed to launch application: {str(e)}")
        sys.exit(1)