File size: 15,830 Bytes
f75a23b f394b25 d184610 f75a23b f394b25 d184610 f394b25 f75a23b 1c5bd8e d8282f1 d184610 d8282f1 a71a831 f75a23b a71a831 f75a23b 1c5bd8e 499e72e a71a831 f75a23b a71a831 d184610 a71a831 499e72e 828effe 1c5bd8e d184610 afdc6ee 9a8092d afdc6ee d8282f1 d184610 1c5bd8e d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 befca65 d184610 1c5bd8e d184610 1c5bd8e d184610 e4d9325 d184610 1c5bd8e d184610 12ddaba d184610 e4d9325 d184610 e4d9325 1c5bd8e d184610 1c5bd8e befca65 f75a23b d184610 f75a23b d184610 f75a23b d8282f1 f75a23b 9a8092d d8282f1 d184610 d8282f1 d184610 f75a23b d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 afdc6ee d8282f1 afdc6ee d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 afdc6ee d8282f1 9a8092d d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 a71a831 55e3db0 f394b25 d8282f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
import markdown
from collections import defaultdict
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def file_hash(path: str) -> str:
"""Generate MD5 hash of file contents"""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
"""Clean and normalize text output"""
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
# Remove unwanted patterns and normalize whitespace
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def extract_medical_data(df: pd.DataFrame) -> Dict[str, Any]:
"""Extract and organize medical data from DataFrame"""
medical_data = defaultdict(list)
for _, row in df.iterrows():
record = {
'form_name': row.get('Form Name', ''),
'form_item': row.get('Form Item', ''),
'response': row.get('Item Response', ''),
'date': row.get('Interview Date', ''),
'interviewer': row.get('Interviewer', ''),
'description': row.get('Description', '')
}
medical_data[row['Booking Number']].append(record)
return medical_data
def identify_red_flags(records: List[Dict[str, Any]]) -> Dict[str, List[str]]:
"""Identify potential red flags in medical records"""
red_flags = {
'symptoms': defaultdict(list),
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'vitals': defaultdict(list),
'labs': defaultdict(list)
}
for record in records:
form_name = record['form_name'].lower()
item = record['form_item'].lower()
response = record['response'].lower()
# Symptom patterns
if 'pain' in item or 'symptom' in form_name:
if 'severe' in response or 'chronic' in response:
red_flags['symptoms'][item].append(response)
# Medication checks
elif 'medication' in form_name or 'drug' in form_name:
if 'interaction' in response or 'allergy' in response:
red_flags['medications'][item].append(response)
# Diagnosis inconsistencies
elif 'diagnosis' in form_name:
if 'rule out' in response or 'possible' in response:
red_flags['diagnoses'][item].append(response)
# Abnormal vitals
elif 'vital' in form_name:
try:
value = float(re.search(r'\d+\.?\d*', response).group())
if ('blood pressure' in item and value > 140) or \
('heart rate' in item and (value < 50 or value > 100)) or \
('temperature' in item and value > 38):
red_flags['vitals'][item].append(response)
except:
pass
# Abnormal labs
elif 'lab' in form_name or 'test' in form_name:
if 'abnormal' in response or 'high' in response or 'low' in response:
red_flags['labs'][item].append(response)
return red_flags
def generate_analysis_prompt(booking: str, records: List[Dict[str, Any]], red_flags: Dict[str, Any]]) -> str:
"""Generate structured prompt for analysis"""
records_text = "\n".join(
f"- {r['form_name']}: {r['form_item']} = {r['response']} ({r['date']} by {r['interviewer']})\n {r['description']}"
for r in records
)
red_flags_text = "\n".join(
f"### {category.capitalize()} Red Flags\n" + "\n".join(
f"- {item}: {', '.join(responses)}"
for item, responses in items.items()
)
for category, items in red_flags.items() if items
)
prompt = f"""
**Patient Booking Number**: {booking}
**Medical Records Summary**:
{records_text}
**Identified Red Flags**:
{red_flags_text if red_flags_text else "No obvious red flags detected"}
**Comprehensive Analysis Instructions**:
1. Review all medical data and red flags above
2. Identify any potential missed diagnoses based on symptoms, labs, and clinical findings
3. Check for medication conflicts or inappropriate prescriptions
4. Note any incomplete assessments or missing diagnostic workups
5. Flag any urgent follow-up needs or critical findings
6. Provide recommendations in clear, actionable terms
**Required Output Format**:
### Missed Diagnoses
- [List any conditions that may have been overlooked based on the data]
### Medication Issues
- [List any medication conflicts, inappropriate prescriptions, or missing medications]
### Assessment Gaps
- [List any incomplete assessments or missing diagnostic tests]
### Urgent Follow-up
- [List any findings requiring immediate attention]
### Clinical Recommendations
- [Provide specific recommendations for next steps]
"""
return prompt
def parse_excel_to_prompts(file_path: str) -> List[Tuple[str, str]]:
"""Parse Excel file into analysis prompts with red flag detection"""
try:
xl = pd.ExcelFile(file_path)
df = xl.parse(xl.sheet_names[0], header=0).fillna("")
medical_data = extract_medical_data(df)
prompts = []
for booking, records in medical_data.items():
red_flags = identify_red_flags(records)
prompt = generate_analysis_prompt(booking, records, red_flags)
prompts.append((booking, prompt))
return prompts
except Exception as e:
raise ValueError(f"Error parsing Excel file: {str(e)}")
def init_agent():
"""Initialize the TxAgent with appropriate settings"""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def format_markdown(text: str) -> str:
"""Convert markdown text to HTML for better display"""
return markdown.markdown(text, extensions=['fenced_code', 'tables'])
def create_ui(agent):
"""Create Gradio UI interface"""
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("# 🏥 Clinical Oversight Assistant (Missed Diagnosis Detection)")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
file_count="single",
interactive=True
)
msg_input = gr.Textbox(
label="Additional Instructions",
placeholder="Add any specific analysis requests...",
lines=3
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
send_btn = gr.Button("Analyze", variant="primary")
# Right column - Outputs
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True,
render_markdown=True
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Select your patient records Excel file
2. **Add Instructions** (Optional): Provide any specific analysis requests
3. **Click Analyze**: The system will process each patient record
4. **Review Results**: Analysis appears in the chat window
5. **Download Report**: Get a full text report of all findings
### Excel File Requirements
Your Excel file must contain these columns:
- Booking Number (patient identifier)
- Form Name (type of medical form)
- Form Item (specific field name)
- Item Response (patient response or value)
- Interview Date (date of recording)
- Interviewer (who recorded the data)
- Description (additional notes)
### Analysis Includes
- **Missed diagnoses**: Potential conditions not identified
- **Medication issues**: Conflicts, side effects, inappropriate prescriptions
- **Assessment gaps**: Missing tests or incomplete evaluations
- **Urgent follow-up**: Critical findings needing immediate attention
- **Clinical recommendations**: Actionable next steps
""")
def format_message(role: str, content: str) -> Tuple[str, str]:
"""Format messages for the chatbot in (user, bot) format"""
if role == "user":
return (content, None)
else:
return (None, content)
def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
"""Main analysis function"""
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Initialize chat history with user message
new_history = chat_history + [format_message("user", message)]
new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
yield new_history, None
prompts = parse_excel_to_prompts(file.name)
full_output = ""
for idx, (booking, prompt) in enumerate(prompts, 1):
chunk_output = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
cleaned = clean_response(r.content)
chunk_output += cleaned + "\n"
elif isinstance(result, str):
cleaned = clean_response(result)
chunk_output += cleaned + "\n"
if chunk_output:
output = f"## Patient Booking: {booking}\n{chunk_output.strip()}\n"
new_history[-1] = format_message("assistant", output)
yield new_history, None
except Exception as e:
error_msg = f"⚠️ Error processing booking {booking}: {str(e)}"
new_history.append(format_message("assistant", error_msg))
yield new_history, None
continue
if chunk_output:
output = f"## Patient Booking: {booking}\n{chunk_output.strip()}\n"
new_history.append(format_message("assistant", output))
full_output += output + "\n"
yield new_history, None
# Save report
file_hash_value = file_hash(file.name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(report_dir, f"{file_hash_value}_{timestamp}_report.md")
with open(report_path, "w", encoding="utf-8") as f:
f.write("# Clinical Oversight Analysis Report\n\n")
f.write(f"**Generated on**: {timestamp}\n\n")
f.write(f"**Source file**: {file.name}\n\n")
f.write(full_output)
yield new_history, report_path if os.path.exists(report_path) else None
except Exception as e:
new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
yield new_history, None
raise gr.Error(f"Analysis failed: {str(e)}")
def clear_chat():
"""Clear chat history and outputs"""
return [], None
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
api_name="analyze"
)
msg_input.submit(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output]
)
clear_btn.click(
clear_chat,
inputs=[],
outputs=[chatbot, download_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch application: {str(e)}")
sys.exit(1) |