File size: 12,320 Bytes
25e2c05 a6968c2 c9b3ae0 a6968c2 973658c 41eb6bd a6968c2 c9b3ae0 a6968c2 887df01 c9b3ae0 a6968c2 3dfd69d a6968c2 c9b3ae0 a6968c2 c9b3ae0 a6968c2 c9b3ae0 a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 c9b3ae0 a6968c2 c9b3ae0 41eb6bd c9b3ae0 a6968c2 3dfd69d a6968c2 41eb6bd c9b3ae0 41eb6bd c9b3ae0 41eb6bd c9b3ae0 41eb6bd a6968c2 41eb6bd a6968c2 818eb65 41eb6bd 818eb65 a6968c2 818eb65 a6968c2 c9b3ae0 7a596d9 a6968c2 818eb65 3dfd69d c9b3ae0 818eb65 c9b3ae0 818eb65 c9b3ae0 3deb36c c9b3ae0 41eb6bd c9b3ae0 41eb6bd c9b3ae0 41eb6bd c3218a0 c9b3ae0 41eb6bd 96347cc 818eb65 c9b3ae0 818eb65 41eb6bd c9b3ae0 2e43581 c9b3ae0 ffd15e8 c9b3ae0 13df505 c9b3ae0 ffd15e8 c9b3ae0 ffd15e8 c9b3ae0 3deb36c c9b3ae0 d2dfc7e c9b3ae0 26668b6 c9b3ae0 41eb6bd c9b3ae0 26668b6 c9b3ae0 41eb6bd 818eb65 c9b3ae0 41eb6bd a6968c2 fe67870 e24be23 818eb65 c9b3ae0 818eb65 96347cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages):
page_text = page.extract_text() or ""
if i < 3 or any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i+1} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text).strip()
return text
def init_agent():
print("π Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
print("β
Agent Ready")
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "β³ Analyzing records for potential oversights..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
# Split extracted text into chunks of ~6,000 characters
chunk_size = 6000
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
combined_response = ""
prompt_template = f"""
Analyze the medical records for clinical oversights. Provide a concise, evidence-based summary under these headings:
1. **Missed Diagnoses**:
- Identify inconsistencies in history, symptoms, or tests.
- Consider psychiatric, neurological, infectious, autoimmune, genetic conditions, family history, trauma, and developmental factors.
2. **Medication Conflicts**:
- Check for contraindications, interactions, or unjustified off-label use.
- Assess if medications worsen diagnoses or cause adverse effects.
3. **Incomplete Assessments**:
- Note missing or superficial cognitive, psychiatric, social, or family assessments.
- Highlight gaps in medical history, substance use, or lab/imaging documentation.
4. **Urgent Follow-up**:
- Flag abnormal lab results, imaging, behaviors, or legal history needing immediate reassessment or referral.
Medical Records (Chunk {0} of {1}):
{{chunk}}
Begin analysis:
"""
try:
if history and history[-1]["content"].startswith("β³"):
history.pop()
# Process each chunk and stream results in real-time
for chunk_idx, chunk in enumerate(chunks, 1):
# Update UI with progress
history.append({"role": "assistant", "content": f"π Processing Chunk {chunk_idx} of {len(chunks)}..."})
yield history, None
prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk)
chunk_response = ""
for chunk_output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[],
):
if chunk_output is None:
continue
if isinstance(chunk_output, list):
for m in chunk_output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned:
chunk_response += cleaned + "\n"
# Update UI with partial response
if history[-1]["content"].startswith("π"):
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
else:
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
yield history, None
elif isinstance(chunk_output, str) and chunk_output.strip():
cleaned = clean_response(chunk_output)
if cleaned:
chunk_response += cleaned + "\n"
# Update UI with partial response
if history[-1]["content"].startswith("π"):
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
else:
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
yield history, None
# Append completed chunk response to combined response
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
# Finalize UI with complete response
if combined_response:
history[-1]["content"] = combined_response.strip()
else:
history.append({"role": "assistant", "content": "No oversights identified."})
# Generate report file
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
print("π¨ ERROR:", e)
history.append({"role": "assistant", "content": f"β Error occurred: {str(e)}"})
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("π Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
) |