File size: 11,025 Bytes
25e2c05 a6968c2 973658c 41eb6bd a6968c2 7a596d9 13df505 a6968c2 887df01 d2dfc7e a6968c2 3dfd69d a6968c2 1ba0100 a6968c2 887df01 a6968c2 13df505 a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 2e43581 a6968c2 7a596d9 41eb6bd 2e43581 a6968c2 3dfd69d a6968c2 41eb6bd 2e43581 41eb6bd a6968c2 41eb6bd a6968c2 818eb65 41eb6bd 818eb65 a6968c2 818eb65 a6968c2 887df01 7a596d9 d2dfc7e 7a596d9 887df01 7a596d9 887df01 7a596d9 a6968c2 818eb65 3dfd69d d313543 13df505 d313543 13df505 818eb65 d313543 3deb36c d313543 41eb6bd 1ba0100 41eb6bd 1ba0100 41eb6bd c3218a0 7a596d9 41eb6bd 96347cc 818eb65 887df01 818eb65 41eb6bd 13df505 2e43581 7a596d9 13df505 887df01 ffd15e8 7a596d9 13df505 ffd15e8 13df505 ffd15e8 d313543 13df505 d313543 3deb36c 41eb6bd 13df505 d2dfc7e d313543 13df505 d2dfc7e 13df505 d313543 13df505 d313543 13df505 d313543 d2dfc7e 13df505 7a596d9 26668b6 41eb6bd 7a596d9 26668b6 7a596d9 41eb6bd 818eb65 1ba0100 41eb6bd a6968c2 fe67870 e24be23 818eb65 d313543 818eb65 96347cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import sys
import os
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import re
import psutil
import subprocess
from collections import defaultdict
from vllm import LLM, SamplingParams
# Persistent directory
persistent_dir = os.getenv("HF_HOME", "/data/hf_cache")
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["VLLM_NO_TORCH_COMPILE"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent, clean_response # MODIFIED: Import clean_response
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_all_pages(file_path: str) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text() or ""
text_chunks.append(page_text.strip())
return "\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_all_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def normalize_text(text: str) -> str:
return re.sub(r"\s+", " ", text.lower().strip())
def consolidate_findings(responses: List[str]) -> str:
findings = defaultdict(set)
headings = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"]
for response in responses:
if not response:
continue
current_heading = None
for line in response.split("\n"):
line = line.strip()
if not line:
continue
if line.lower().startswith(tuple(h.lower() + ":" for h in headings)):
current_heading = next(h for h in headings if line.lower().startswith(h.lower() + ":"))
elif current_heading and line.startswith("-"):
findings[current_heading].add(normalize_text(line))
output = []
for heading in headings:
if findings[heading]:
output.append(f"**{heading}**:")
original_lines = {normalize_text(r): r for r in sum([r.split("\n") for r in responses], []) if r.startswith("-")}
output.extend(sorted(original_lines.get(n, "- " + n) for n in findings[heading]))
return "\n".join(output).strip() if output else "No oversights identified."
def init_agent():
print("π Initializing model...")
log_system_usage("Before Load")
model = LLM(
model="mims-harvard/TxAgent-T1-Llama-3.1-8B",
max_model_len=4096, # MODIFIED: Enforce low VRAM
enforce_eager=True,
enable_chunked_prefill=True,
max_num_batched_tokens=8192,
gpu_memory_utilization=0.5, # MODIFIED: Limit VRAM
)
log_system_usage("After Load")
print("β
Model Ready")
return model
def create_ui(model):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Report")
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "π Analyzing..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join([json.loads(r).get("content", "") for r in results if "content" in json.loads(r)])
file_hash_value = file_hash(files[0].name) if files else ""
chunk_size = 800 # MODIFIED: Enforce correct size
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
chunk_responses = []
batch_size = 4 # MODIFIED: Lower for VRAM
total_chunks = len(chunks)
prompt_template = """
Strictly output oversights under these exact headings, one point per line, starting with "-". No other text, reasoning, or tools.
**Missed Diagnoses**:
**Medication Conflicts**:
**Incomplete Assessments**:
**Urgent Follow-up**:
Records:
{chunk}
""" # MODIFIED: Stronger instructions
sampling_params = SamplingParams(
temperature=0.3, # MODIFIED: Improve output quality
max_tokens=64, # MODIFIED: Allow full responses
seed=100,
)
try:
findings = defaultdict(list) # MODIFIED: Track per batch
for i in range(0, len(chunks), batch_size):
batch = chunks[i:i + batch_size]
prompts = [prompt_template.format(chunk=chunk) for chunk in batch]
log_system_usage(f"Batch {i//batch_size + 1}")
outputs = model.generate(prompts, sampling_params, use_tqdm=True) # MODIFIED: Stream progress
batch_responses = []
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(clean_response, output.outputs[0].text) for output in outputs]
batch_responses.extend(f.result() for f in as_completed(futures))
processed = min(i + len(batch), total_chunks)
batch_output = []
for response in batch_responses:
if response:
chunk_responses.append(response)
current_heading = None
for line in response.split("\n"):
line = line.strip()
if line.lower().startswith(tuple(h.lower() + ":" for h in ["missed diagnoses", "medication conflicts", "incomplete assessments", "urgent follow-up"])):
current_heading = line[:-1]
if current_heading not in batch_output:
batch_output.append(current_heading + ":")
elif current_heading and line.startswith("-"):
findings[current_heading].append(line)
batch_output.append(line)
# MODIFIED: Stream partial results
if batch_output:
history[-1]["content"] = "\n".join(batch_output) + f"\n\nπ Processing chunk {processed}/{total_chunks}..."
else:
history[-1]["content"] = f"π Processing chunk {processed}/{total_chunks}..."
yield history, None
# MODIFIED: Final consolidation
final_response = consolidate_findings(chunk_responses)
history[-1]["content"] = final_response
yield history, None
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path and final_response != "No oversights identified.":
with open(report_path, "w", encoding="utf-8") as f:
f.write(final_response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
print("π¨ ERROR:", e)
history[-1]["content"] = f"β Error: {str(e)}"
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("π Launching app...")
model = init_agent()
demo = create_ui(model)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
) |