File size: 11,025 Bytes
25e2c05
a6968c2
 
 
973658c
41eb6bd
a6968c2
 
 
 
 
7a596d9
13df505
a6968c2
887df01
d2dfc7e
a6968c2
3dfd69d
a6968c2
 
 
 
 
1ba0100
a6968c2
 
 
 
 
 
 
887df01
a6968c2
 
 
 
 
13df505
a6968c2
 
41eb6bd
a6968c2
 
41eb6bd
 
a6968c2
2e43581
a6968c2
 
 
7a596d9
41eb6bd
2e43581
 
a6968c2
3dfd69d
a6968c2
 
 
 
 
 
41eb6bd
 
 
2e43581
41eb6bd
 
 
 
 
 
a6968c2
41eb6bd
a6968c2
 
 
 
 
818eb65
41eb6bd
 
 
 
 
 
818eb65
a6968c2
818eb65
a6968c2
887df01
 
 
7a596d9
 
 
 
 
 
 
 
 
 
 
 
d2dfc7e
 
7a596d9
887df01
7a596d9
 
 
 
 
887df01
 
7a596d9
 
a6968c2
818eb65
3dfd69d
d313543
 
13df505
d313543
 
 
13df505
818eb65
 
d313543
 
3deb36c
d313543
41eb6bd
 
 
1ba0100
41eb6bd
 
1ba0100
41eb6bd
c3218a0
 
7a596d9
41eb6bd
 
 
 
 
96347cc
818eb65
 
887df01
818eb65
41eb6bd
13df505
2e43581
7a596d9
13df505
887df01
ffd15e8
7a596d9
13df505
 
 
 
 
 
ffd15e8
13df505
 
 
ffd15e8
d313543
13df505
 
d313543
 
3deb36c
41eb6bd
13df505
d2dfc7e
 
d313543
 
13df505
d2dfc7e
13df505
d313543
 
13df505
d313543
13df505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d313543
d2dfc7e
13df505
7a596d9
 
 
26668b6
41eb6bd
7a596d9
26668b6
7a596d9
41eb6bd
 
 
818eb65
1ba0100
41eb6bd
 
 
 
a6968c2
fe67870
e24be23
818eb65
d313543
 
818eb65
 
 
 
 
 
96347cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import sys
import os
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import re
import psutil
import subprocess
from collections import defaultdict
from vllm import LLM, SamplingParams

# Persistent directory
persistent_dir = os.getenv("HF_HOME", "/data/hf_cache")
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["VLLM_NO_TORCH_COMPILE"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent, clean_response  # MODIFIED: Import clean_response

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_all_pages(file_path: str) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for page in pdf.pages:
                page_text = page.extract_text() or ""
                text_chunks.append(page_text.strip())
        return "\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()
        if file_type == "pdf":
            text = extract_all_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")

def normalize_text(text: str) -> str:
    return re.sub(r"\s+", " ", text.lower().strip())

def consolidate_findings(responses: List[str]) -> str:
    findings = defaultdict(set)
    headings = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"]
    
    for response in responses:
        if not response:
            continue
        current_heading = None
        for line in response.split("\n"):
            line = line.strip()
            if not line:
                continue
            if line.lower().startswith(tuple(h.lower() + ":" for h in headings)):
                current_heading = next(h for h in headings if line.lower().startswith(h.lower() + ":"))
            elif current_heading and line.startswith("-"):
                findings[current_heading].add(normalize_text(line))
    
    output = []
    for heading in headings:
        if findings[heading]:
            output.append(f"**{heading}**:")
            original_lines = {normalize_text(r): r for r in sum([r.split("\n") for r in responses], []) if r.startswith("-")}
            output.extend(sorted(original_lines.get(n, "- " + n) for n in findings[heading]))
    return "\n".join(output).strip() if output else "No oversights identified."

def init_agent():
    print("πŸ” Initializing model...")
    log_system_usage("Before Load")
    model = LLM(
        model="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        max_model_len=4096,  # MODIFIED: Enforce low VRAM
        enforce_eager=True,
        enable_chunked_prefill=True,
        max_num_batched_tokens=8192,
        gpu_memory_utilization=0.5,  # MODIFIED: Limit VRAM
    )
    log_system_usage("After Load")
    print("βœ… Model Ready")
    return model

def create_ui(model):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Report")

        def analyze(message: str, history: List[dict], files: List):
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": "πŸ”„ Analyzing..."})
            yield history, None

            extracted = ""
            file_hash_value = ""
            if files:
                with ThreadPoolExecutor(max_workers=6) as executor:
                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                    results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                    extracted = "\n".join([json.loads(r).get("content", "") for r in results if "content" in json.loads(r)])
                    file_hash_value = file_hash(files[0].name) if files else ""

            chunk_size = 800  # MODIFIED: Enforce correct size
            chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
            chunk_responses = []
            batch_size = 4  # MODIFIED: Lower for VRAM
            total_chunks = len(chunks)

            prompt_template = """
            Strictly output oversights under these exact headings, one point per line, starting with "-". No other text, reasoning, or tools.

            **Missed Diagnoses**:
            **Medication Conflicts**:
            **Incomplete Assessments**:
            **Urgent Follow-up**:

            Records:
            {chunk}
            """  # MODIFIED: Stronger instructions

            sampling_params = SamplingParams(
                temperature=0.3,  # MODIFIED: Improve output quality
                max_tokens=64,   # MODIFIED: Allow full responses
                seed=100,
            )

            try:
                findings = defaultdict(list)  # MODIFIED: Track per batch
                for i in range(0, len(chunks), batch_size):
                    batch = chunks[i:i + batch_size]
                    prompts = [prompt_template.format(chunk=chunk) for chunk in batch]
                    log_system_usage(f"Batch {i//batch_size + 1}")
                    outputs = model.generate(prompts, sampling_params, use_tqdm=True)  # MODIFIED: Stream progress
                    batch_responses = []
                    with ThreadPoolExecutor(max_workers=4) as executor:
                        futures = [executor.submit(clean_response, output.outputs[0].text) for output in outputs]
                        batch_responses.extend(f.result() for f in as_completed(futures))
                    
                    processed = min(i + len(batch), total_chunks)
                    batch_output = []
                    for response in batch_responses:
                        if response:
                            chunk_responses.append(response)
                            current_heading = None
                            for line in response.split("\n"):
                                line = line.strip()
                                if line.lower().startswith(tuple(h.lower() + ":" for h in ["missed diagnoses", "medication conflicts", "incomplete assessments", "urgent follow-up"])):
                                    current_heading = line[:-1]
                                    if current_heading not in batch_output:
                                        batch_output.append(current_heading + ":")
                                elif current_heading and line.startswith("-"):
                                    findings[current_heading].append(line)
                                    batch_output.append(line)
                    
                    # MODIFIED: Stream partial results
                    if batch_output:
                        history[-1]["content"] = "\n".join(batch_output) + f"\n\nπŸ”„ Processing chunk {processed}/{total_chunks}..."
                    else:
                        history[-1]["content"] = f"πŸ”„ Processing chunk {processed}/{total_chunks}..."
                    yield history, None

                # MODIFIED: Final consolidation
                final_response = consolidate_findings(chunk_responses)
                history[-1]["content"] = final_response
                yield history, None

                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                if report_path and final_response != "No oversights identified.":
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(final_response)
                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                print("🚨 ERROR:", e)
                history[-1]["content"] = f"❌ Error: {str(e)}"
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    print("πŸš€ Launching app...")
    model = init_agent()
    demo = create_ui(model)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )