File size: 11,446 Bytes
9ec5ec4 7323cb6 abc4511 7323cb6 abc4511 9ec5ec4 abc4511 3cdcbc4 9ec5ec4 3cdcbc4 c5494f7 3cdcbc4 9ec5ec4 abc4511 9ef8abc c441954 3cdcbc4 9ec5ec4 3cdcbc4 abc4511 dae38a2 7323cb6 abc4511 1da2cfd abc4511 1da2cfd abc4511 6af3907 abc4511 1da2cfd abc4511 e24be23 abc4511 dae38a2 abc4511 7323cb6 6af3907 abc4511 1da2cfd abc4511 1da2cfd 6af3907 abc4511 dae38a2 abc4511 dae38a2 6af3907 abc4511 7323cb6 dae38a2 7323cb6 abc4511 9ec5ec4 7323cb6 9ec5ec4 5f7a1a1 9ec5ec4 6af3907 abc4511 9ec5ec4 abc4511 9ec5ec4 abc4511 9ef8abc 9ec5ec4 6af3907 9ec5ec4 6af3907 9ec5ec4 abc4511 3cdcbc4 9ec5ec4 3cdcbc4 9ec5ec4 abc4511 6af3907 abc4511 6af3907 9ec5ec4 6af3907 9ec5ec4 6af3907 abc4511 6af3907 9ec5ec4 6af3907 9ec5ec4 abc4511 6af3907 9ec5ec4 abc4511 e24be23 9ec5ec4 e24be23 9ec5ec4 abc4511 9ef8abc abc4511 3cdcbc4 abc4511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
import re
import psutil
import subprocess
# ---------------------------------------------------------------------------------------
# Persistent directory for Hugging Face Spaces
# ---------------------------------------------------------------------------------------
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# ---------------------------------------------------------------------------------------
# Add src to path
# ---------------------------------------------------------------------------------------
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# ---------------------------------------------------------------------------------------
# Helper functions
# ---------------------------------------------------------------------------------------
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'
}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages[:3]):
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu_percent = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] 🧠 CPU: {cpu_percent}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True,
text=True,
)
if result.returncode == 0:
mem_used, mem_total, util = result.stdout.strip().split(", ")
print(f"[{tag}] ⚡ GPU: {mem_used}MB / {mem_total}MB | Utilization: {util}%")
else:
print(f"[{tag}] ⚡ GPU info not available.")
except Exception as e:
print(f"[{tag}] ⚠️ Failed to log system usage: {e}")
def init_agent():
print("🔁 Initializing TxAgent...")
log_system_usage("Before Model Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Model Load")
print("✅ TxAgent is ready.")
print("📦 Cached model files:")
for root, _, files in os.walk(model_cache_dir):
for file in files:
print(os.path.join(root, file))
return agent
# ---------------------------------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------------------------------
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
""")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(label="Upload Medical Records",
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze_potential_oversights(message: str, history: list, files: list):
history = history + [{"role": "user", "content": message},
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}]
yield history, None
extracted_data = ""
file_hash_value = ""
if files and isinstance(files, list):
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [
executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
for f in files if hasattr(f, 'name')
]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted_data = "\n".join(results)
file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""
max_extracted_chars = 12000
truncated_data = extracted_data[:max_extracted_chars]
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{truncated_data}
### Potential Oversights:
"""
response = ""
try:
for chunk in agent.run_gradio_chat(
message=analysis_prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[]
):
if chunk is None: continue
if isinstance(chunk, str):
response += chunk
elif isinstance(chunk, list):
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
cleaned = response.replace("[TOOL_CALLS]", "").strip()
history[-1] = {"role": "assistant", "content": cleaned}
yield history, None
except Exception as agent_error:
history[-1] = {"role": "assistant", "content": f"❌ Analysis failed: {str(agent_error)}"}
yield history, None
return
final_output = response.replace("[TOOL_CALLS]", "").strip()
if not final_output:
final_output = "No clear oversights identified. Recommend comprehensive review."
history[-1] = {"role": "assistant", "content": final_output}
report_path = None
if file_hash_value:
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
if os.path.exists(possible_report):
report_path = possible_report
yield history, report_path
send_btn.click(analyze_potential_oversights,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output])
msg_input.submit(analyze_potential_oversights,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output])
gr.Examples([
["What might have been missed in this patient's treatment?"],
["Are there any medication conflicts in these records?"],
["What abnormal results require follow-up?"]],
inputs=msg_input)
return demo
# ---------------------------------------------------------------------------------------
# Launch
# ---------------------------------------------------------------------------------------
if __name__ == "__main__":
print("🚀 Starting TxAgent App...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
|