File size: 10,696 Bytes
f75a23b f394b25 f75a23b f394b25 9a8092d f394b25 f75a23b 1c5bd8e f75a23b e4d9325 9a8092d a71a831 f75a23b a71a831 f75a23b 1c5bd8e 499e72e a71a831 f75a23b a71a831 499e72e 828effe 1c5bd8e afdc6ee 9a8092d afdc6ee 1c5bd8e afdc6ee 1c5bd8e e4d9325 1c5bd8e 12ddaba 1c5bd8e e4d9325 1c5bd8e e4d9325 1c5bd8e afdc6ee f75a23b afdc6ee f75a23b 9a8092d afdc6ee 9a8092d f75a23b 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee 9a8092d afdc6ee a71a831 55e3db0 f394b25 afdc6ee 9a8092d afdc6ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple
import hashlib
import shutil
import re
from datetime import datetime
import time
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def parse_excel_to_prompts(file_path: str) -> List[str]:
try:
xl = pd.ExcelFile(file_path)
df = xl.parse(xl.sheet_names[0], header=0).fillna("")
groups = df.groupby("Booking Number")
prompts = []
for booking, group in groups:
records = []
for _, row in group.iterrows():
record = f"- {row['Form Name']}: {row['Form Item']} = {row['Item Response']} ({row['Interview Date']} by {row['Interviewer']})\n{row['Description']}"
records.append(clean_response(record))
record_text = "\n".join(records)
prompt = f"""
Patient Booking Number: {booking}
Instructions:
Analyze the following patient case for missed diagnoses, medication conflicts, incomplete assessments, and any urgent follow-up needed. Summarize under the markdown headings.
Data:
{record_text}
### Missed Diagnoses
- ...
### Medication Conflicts
- ...
### Incomplete Assessments
- ...
### Urgent Follow-up
- ...
"""
prompts.append(prompt)
return prompts
except Exception as e:
raise ValueError(f"Error parsing Excel file: {str(e)}")
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
file_count="single",
interactive=True
)
msg_input = gr.Textbox(
label="Additional Instructions",
placeholder="Add any specific analysis requests...",
lines=3
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
send_btn = gr.Button("Analyze", variant="primary")
# Right column - Outputs
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Select your patient records Excel file
2. **Add Instructions** (Optional): Provide any specific analysis requests
3. **Click Analyze**: The system will process each patient record
4. **Review Results**: Analysis appears in the chat window
5. **Download Report**: Get a full text report of all findings
### Excel File Requirements
Your Excel file must contain these columns:
- Booking Number
- Form Name
- Form Item
- Item Response
- Interview Date
- Interviewer
- Description
### Analysis Includes
- Missed diagnoses
- Medication conflicts
- Incomplete assessments
- Urgent follow-up needs
""")
def format_message(role: str, content: str) -> Tuple[str, str]:
"""Format messages for the chatbot in (user, bot) format"""
if role == "user":
return (content, None)
else:
return (None, content)
def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Initialize chat history with user message
new_history = chat_history + [format_message("user", message)]
new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
yield new_history, None
prompts = parse_excel_to_prompts(file.name)
full_output = ""
for idx, prompt in enumerate(prompts, 1):
chunk_output = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
cleaned = clean_response(r.content)
chunk_output += cleaned + "\n"
elif isinstance(result, str):
cleaned = clean_response(result)
chunk_output += cleaned + "\n"
if chunk_output:
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
new_history[-1] = format_message("assistant", output)
yield new_history, None
except Exception as e:
error_msg = f"⚠️ Error processing booking {idx}: {str(e)}"
new_history.append(format_message("assistant", error_msg))
yield new_history, None
continue
if chunk_output:
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
new_history.append(format_message("assistant", output))
full_output += output + "\n"
yield new_history, None
# Save report
file_hash_value = file_hash(file.name)
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
with open(report_path, "w", encoding="utf-8") as f:
f.write(full_output)
yield new_history, report_path if os.path.exists(report_path) else None
except Exception as e:
new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
yield new_history, None
raise gr.Error(f"Analysis failed: {str(e)}")
def clear_chat():
return [], None
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
api_name="analyze"
)
msg_input.submit(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output]
)
clear_btn.click(
clear_chat,
inputs=[],
outputs=[chatbot, download_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch application: {str(e)}")
sys.exit(1) |