File size: 10,696 Bytes
f75a23b
f394b25
 
f75a23b
f394b25
9a8092d
f394b25
f75a23b
 
1c5bd8e
f75a23b
e4d9325
9a8092d
a71a831
 
f75a23b
 
 
a71a831
 
f75a23b
1c5bd8e
499e72e
a71a831
f75a23b
 
 
 
 
 
 
 
 
a71a831
 
499e72e
828effe
1c5bd8e
afdc6ee
 
9a8092d
afdc6ee
 
1c5bd8e
 
 
 
 
 
afdc6ee
 
 
 
 
 
 
 
 
 
 
 
 
 
1c5bd8e
 
 
 
 
 
 
e4d9325
1c5bd8e
 
12ddaba
1c5bd8e
 
e4d9325
1c5bd8e
 
e4d9325
1c5bd8e
 
 
afdc6ee
 
 
 
f75a23b
 
 
 
afdc6ee
f75a23b
9a8092d
afdc6ee
9a8092d
 
 
 
 
 
 
 
 
 
 
 
f75a23b
 
9a8092d
afdc6ee
 
9a8092d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afdc6ee
9a8092d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afdc6ee
9a8092d
 
 
 
 
 
 
 
afdc6ee
 
 
 
9a8092d
 
 
 
afdc6ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a8092d
afdc6ee
 
9a8092d
 
afdc6ee
 
 
9a8092d
 
afdc6ee
 
 
 
9a8092d
afdc6ee
9a8092d
afdc6ee
 
 
 
 
 
9a8092d
 
afdc6ee
 
9a8092d
 
afdc6ee
9a8092d
 
 
 
afdc6ee
 
 
9a8092d
afdc6ee
 
 
 
 
 
9a8092d
afdc6ee
 
 
9a8092d
 
 
 
 
afdc6ee
a71a831
55e3db0
f394b25
afdc6ee
 
 
 
 
 
 
 
 
 
 
 
9a8092d
afdc6ee
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple
import hashlib
import shutil
import re
from datetime import datetime
import time

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def clean_response(text: str) -> str:
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def parse_excel_to_prompts(file_path: str) -> List[str]:
    try:
        xl = pd.ExcelFile(file_path)
        df = xl.parse(xl.sheet_names[0], header=0).fillna("")
        groups = df.groupby("Booking Number")
        prompts = []
        
        for booking, group in groups:
            records = []
            for _, row in group.iterrows():
                record = f"- {row['Form Name']}: {row['Form Item']} = {row['Item Response']} ({row['Interview Date']} by {row['Interviewer']})\n{row['Description']}"
                records.append(clean_response(record))
            
            record_text = "\n".join(records)
            prompt = f"""
Patient Booking Number: {booking}

Instructions:
Analyze the following patient case for missed diagnoses, medication conflicts, incomplete assessments, and any urgent follow-up needed. Summarize under the markdown headings.

Data:
{record_text}

### Missed Diagnoses
- ...

### Medication Conflicts
- ...

### Incomplete Assessments
- ...

### Urgent Follow-up
- ...
"""
            prompts.append(prompt)
        return prompts
    except Exception as e:
        raise ValueError(f"Error parsing Excel file: {str(e)}")

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
        gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
        
        with gr.Tabs():
            with gr.TabItem("Analysis"):
                with gr.Row():
                    # Left column - Inputs
                    with gr.Column(scale=1):
                        file_upload = gr.File(
                            label="Upload Excel File",
                            file_types=[".xlsx"], 
                            file_count="single",
                            interactive=True
                        )
                        msg_input = gr.Textbox(
                            label="Additional Instructions",
                            placeholder="Add any specific analysis requests...",
                            lines=3
                        )
                        with gr.Row():
                            clear_btn = gr.Button("Clear", variant="secondary")
                            send_btn = gr.Button("Analyze", variant="primary")
                    
                    # Right column - Outputs
                    with gr.Column(scale=2):
                        chatbot = gr.Chatbot(
                            label="Analysis Results",
                            height=600,
                            bubble_full_width=False,
                            show_copy_button=True
                        )
                        download_output = gr.File(
                            label="Download Full Report",
                            interactive=False
                        )
            
            with gr.TabItem("Instructions"):
                gr.Markdown("""
                ## How to Use This Tool
                
                1. **Upload Excel File**: Select your patient records Excel file
                2. **Add Instructions** (Optional): Provide any specific analysis requests
                3. **Click Analyze**: The system will process each patient record
                4. **Review Results**: Analysis appears in the chat window
                5. **Download Report**: Get a full text report of all findings
                
                ### Excel File Requirements
                Your Excel file must contain these columns:
                - Booking Number
                - Form Name
                - Form Item
                - Item Response
                - Interview Date
                - Interviewer
                - Description
                
                ### Analysis Includes
                - Missed diagnoses
                - Medication conflicts
                - Incomplete assessments
                - Urgent follow-up needs
                """)
        
        def format_message(role: str, content: str) -> Tuple[str, str]:
            """Format messages for the chatbot in (user, bot) format"""
            if role == "user":
                return (content, None)
            else:
                return (None, content)
        
        def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
            if not file:
                raise gr.Error("Please upload an Excel file first")
            
            try:
                # Initialize chat history with user message
                new_history = chat_history + [format_message("user", message)]
                new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
                yield new_history, None
                
                prompts = parse_excel_to_prompts(file.name)
                full_output = ""
                
                for idx, prompt in enumerate(prompts, 1):
                    chunk_output = ""
                    try:
                        for result in agent.run_gradio_chat(
                            message=prompt,
                            history=[],
                            temperature=0.2,
                            max_new_tokens=1024,
                            max_token=4096,
                            call_agent=False,
                            conversation=[],
                        ):
                            if isinstance(result, list):
                                for r in result:
                                    if hasattr(r, 'content') and r.content:
                                        cleaned = clean_response(r.content)
                                        chunk_output += cleaned + "\n"
                            elif isinstance(result, str):
                                cleaned = clean_response(result)
                                chunk_output += cleaned + "\n"
                            
                            if chunk_output:
                                output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
                                new_history[-1] = format_message("assistant", output)
                                yield new_history, None
                                
                    except Exception as e:
                        error_msg = f"⚠️ Error processing booking {idx}: {str(e)}"
                        new_history.append(format_message("assistant", error_msg))
                        yield new_history, None
                        continue
                        
                    if chunk_output:
                        output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
                        new_history.append(format_message("assistant", output))
                        full_output += output + "\n"
                        yield new_history, None
                
                # Save report
                file_hash_value = file_hash(file.name)
                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
                with open(report_path, "w", encoding="utf-8") as f:
                    f.write(full_output)
                
                yield new_history, report_path if os.path.exists(report_path) else None
                
            except Exception as e:
                new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
                yield new_history, None
                raise gr.Error(f"Analysis failed: {str(e)}")
        
        def clear_chat():
            return [], None
        
        # Event handlers
        send_btn.click(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output],
            api_name="analyze"
        )
        
        msg_input.submit(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output]
        )
        
        clear_btn.click(
            clear_chat,
            inputs=[],
            outputs=[chatbot, download_output]
        )
    
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        
        demo.queue(
            api_open=False,
            max_size=20
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        print(f"Failed to launch application: {str(e)}")
        sys.exit(1)