File size: 16,324 Bytes
f394b25
 
 
 
 
 
8a7f6db
e12aa83
f394b25
 
 
 
6b4b480
f394b25
 
 
 
a71a831
f394b25
a71a831
f394b25
 
 
8a7f6db
a71a831
 
 
 
 
 
 
 
 
 
 
 
8a7f6db
 
 
 
 
3cd3468
c10ba83
 
 
fcebf54
c10ba83
3cd3468
a71a831
 
 
 
 
 
 
 
8a7f6db
828effe
e12aa83
a71a831
 
 
 
 
 
8a7f6db
 
 
 
 
 
 
f394b25
8a7f6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
8a7f6db
a71a831
 
8a7f6db
a71a831
8a7f6db
 
 
 
a71a831
 
8a7f6db
 
a71a831
8a7f6db
 
 
 
 
 
 
 
 
 
 
a71a831
8a7f6db
 
 
 
a71a831
8a7f6db
 
a71a831
 
 
8a7f6db
a71a831
8a7f6db
 
 
 
 
 
 
 
a71a831
8a7f6db
a71a831
 
8a7f6db
 
 
 
a71a831
8a7f6db
 
 
a71a831
 
 
8a7f6db
 
a71a831
8a7f6db
 
e27edaa
8a7f6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e12aa83
a71a831
 
4cf6d2e
8a7f6db
 
 
 
 
 
 
 
 
 
4cf6d2e
8a7f6db
a71a831
 
 
 
 
 
 
 
 
e12aa83
 
 
 
 
 
 
 
 
a71a831
e12aa83
a71a831
 
e12aa83
a71a831
e12aa83
8a7f6db
 
 
 
 
 
 
 
 
 
 
 
a71a831
 
 
 
e12aa83
4cf6d2e
a71a831
 
8a7f6db
a71a831
f394b25
8a7f6db
 
 
 
 
 
 
 
 
f394b25
8a7f6db
 
e12aa83
8a7f6db
 
a71a831
8a7f6db
 
a71a831
8a7f6db
 
 
 
 
 
 
 
 
e12aa83
a71a831
8a7f6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
8a7f6db
 
 
 
 
4cf6d2e
a71a831
8a7f6db
a71a831
 
8a7f6db
 
 
a71a831
55e3db0
f394b25
 
8a7f6db
e12aa83
 
8a7f6db
f394b25
 
 
a71a831
f394b25
 
 
4cf6d2e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_all_pages(file_path: str, progress_callback=None) -> str:
    try:
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
            if total_pages == 0:
                return ""

        batch_size = 10
        batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
        text_chunks = [""] * total_pages
        processed_pages = 0

        def extract_batch(start: int, end: int) -> List[tuple]:
            results = []
            with pdfplumber.open(file_path) as pdf:
                for page in pdf.pages[start:end]:
                    page_num = start + pdf.pages.index(page)
                    page_text = page.extract_text() or ""
                    results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
            return results

        with ThreadPoolExecutor(max_workers=6) as executor:
            futures = [executor.submit(extract_batch, start, end) for start, end in batches]
            for future in as_completed(futures):
                for page_num, text in future.result():
                    text_chunks[page_num] = text
                processed_pages += batch_size
                if progress_callback:
                    progress_callback(min(processed_pages, total_pages), total_pages)

        return "\n\n".join(filter(None, text_chunks))
    except Exception as e:
        logger.error("PDF processing error: %s", e)
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
    try:
        file_h = file_hash(file_path)
        cache_key = f"{file_h}_{file_type}"
        if cache_key in cache:
            return cache[cache_key]

        if file_type == "pdf":
            text = extract_all_pages(file_path, progress_callback)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})

        cache[cache_key] = result
        return result
    except Exception as e:
        logger.error("Error processing %s: %s", os.path.basename(file_path), e)
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
    except Exception as e:
        logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)

def clean_response(text: str) -> str:
    text = sanitize_utf8(text)
    # Remove unwanted patterns and tool call artifacts
    text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
    # Extract only missed diagnoses, ignoring other categories
    diagnoses = []
    lines = text.splitlines()
    in_diagnoses_section = False
    for line in lines:
        line = line.strip()
        if not line:
            continue
        if re.match(r"###\s*Missed Diagnoses", line):
            in_diagnoses_section = True
            continue
        if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
            in_diagnoses_section = False
            continue
        if in_diagnoses_section and re.match(r"-\s*.+", line):
            diagnosis = re.sub(r"^\-\s*", "", line).strip()
            if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
                diagnoses.append(diagnosis)
    # Join diagnoses into a plain text paragraph
    text = " ".join(diagnoses)
    # Clean up extra whitespace and punctuation
    text = re.sub(r"\s+", " ", text).strip()
    text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
    return text if text else ""

def summarize_findings(combined_response: str) -> str:
    # Split response by chunk analyses
    chunks = combined_response.split("--- Analysis for Chunk")
    diagnoses = []
    for chunk in chunks:
        chunk = chunk.strip()
        if not chunk or "No oversights identified" in chunk:
            continue
        # Extract missed diagnoses from chunk
        lines = chunk.splitlines()
        in_diagnoses_section = False
        for line in lines:
            line = line.strip()
            if not line:
                continue
            if re.match(r"###\s*Missed Diagnoses", line):
                in_diagnoses_section = True
                continue
            if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
                in_diagnoses_section = False
                continue
            if in_diagnoses_section and re.match(r"-\s*.+", line):
                diagnosis = re.sub(r"^\-\s*", "", line).strip()
                if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
                    diagnoses.append(diagnosis)

    # Remove duplicates while preserving order
    seen = set()
    unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
    
    if not unique_diagnoses:
        return "No missed diagnoses were identified in the provided records."

    # Combine into a single paragraph
    summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
    if len(unique_diagnoses) > 1:
        summary += f", and {unique_diagnoses[-1]}"
    elif len(unique_diagnoses) == 1:
        summary = "Missed diagnoses include " + unique_diagnoses[0]
    summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
    
    return summary.strip()

def init_agent():
    logger.info("Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=False,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    logger.info("Agent Ready")
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
        final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")
        progress_bar = gr.Progress()

        prompt_template = """
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""

        def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
            history.append({"role": "user", "content": message})
            yield history, None, ""

            extracted = ""
            file_hash_value = ""
            if files:
                def update_extraction_progress(current, total):
                    progress(current / total, desc=f"Extracting text... Page {current}/{total}")
                    return history, None, ""

                with ThreadPoolExecutor(max_workers=6) as executor:
                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
                    results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                    extracted = "\n".join(results)
                    file_hash_value = file_hash(files[0].name) if files else ""

                history.append({"role": "assistant", "content": "✅ Text extraction complete."})
                yield history, None, ""

            chunk_size = 6000
            chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
            combined_response = ""
            batch_size = 2

            try:
                for batch_idx in range(0, len(chunks), batch_size):
                    batch_chunks = chunks[batch_idx:batch_idx + batch_size]
                    batch_prompts = [prompt_template.format(i + 1, len(chunks), chunk=chunk[:4000]) for i, chunk in enumerate(batch_chunks)]
                    batch_responses = []

                    progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")

                    with ThreadPoolExecutor(max_workers=len(batch_chunks)) as executor:
                        futures = [executor.submit(agent.run_gradio_chat, prompt, [], 0.2, 512, 2048, False, []) for prompt in batch_prompts]
                        for future in as_completed(futures):
                            chunk_response = ""
                            for chunk_output in future.result():
                                if chunk_output is None:
                                    continue
                                if isinstance(chunk_output, list):
                                    for m in chunk_output:
                                        if hasattr(m, 'content') and m.content:
                                            cleaned = clean_response(m.content)
                                            if cleaned:
                                                chunk_response += cleaned + " "
                                elif isinstance(chunk_output, str) and chunk_output.strip():
                                    cleaned = clean_response(chunk_output)
                                    if cleaned:
                                        chunk_response += cleaned + " "
                            batch_responses.append(chunk_response.strip())
                            torch.cuda.empty_cache()
                            gc.collect()

                    for chunk_idx, chunk_response in enumerate(batch_responses, batch_idx + 1):
                        if chunk_response:
                            combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
                        else:
                            combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo missed diagnoses identified.\n"
                        history[-1] = {"role": "assistant", "content": combined_response.strip()}
                        yield history, None, ""

                if combined_response.strip() and not all("No missed diagnoses identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
                    history[-1]["content"] = combined_response.strip()
                else:
                    history.append({"role": "assistant", "content": "No missed diagnoses identified in the provided records."})

                summary = summarize_findings(combined_response)
                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                if report_path:
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(combined_response + "\n\n" + summary)
                yield history, report_path if report_path and os.path.exists(report_path) else None, summary

            except Exception as e:
                logger.error("Analysis error: %s", e)
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None, f"Error occurred during analysis: {str(e)}"

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
    return demo

if __name__ == "__main__":
    try:
        logger.info("Launching app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(api_open=False).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    finally:
        if torch.distributed.is_initialized():
            torch.distributed.destroy_process_group()