File size: 18,078 Bytes
f394b25 a71a831 828effe f394b25 6b4b480 f394b25 a71a831 f394b25 828effe f394b25 a71a831 f394b25 828effe a71a831 0a3f912 94b553f 0a3f912 fcebf54 a71a831 828effe a71a831 828effe a71a831 f394b25 a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 4cf6d2e a71a831 4cf6d2e a71a831 f394b25 a71a831 828effe a71a831 828effe a71a831 828effe a71a831 4cf6d2e a71a831 f394b25 a71a831 f394b25 a71a831 f394b25 a71a831 f394b25 a71a831 4cf6d2e a71a831 4cf6d2e a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe a71a831 828effe 4cf6d2e a71a831 f394b25 a71a831 f394b25 828effe f394b25 a71a831 4cf6d2e a71a831 4cf6d2e f394b25 a71a831 f394b25 a71a831 55e3db0 a71a831 f394b25 a71a831 828effe a71a831 828effe 4cf6d2e a71a831 4cf6d2e a71a831 828effe a71a831 828effe a71a831 828effe a71a831 4cf6d2e a71a831 828effe a71a831 4cf6d2e 828effe a71a831 55e3db0 f394b25 a71a831 828effe a71a831 f394b25 a71a831 f394b25 4cf6d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ProcessPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
import pyarrow as pa
import pyarrow.csv as pc
import pyarrow.parquet as pq
from vllm import LLM, SamplingParams
import asyncio
import threading
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# File handler for response logging
response_log_file = os.path.join("/data/hf_cache", "response_log.txt")
response_logger = logging.getLogger("ResponseLogger")
response_handler = logging.FileHandler(response_log_file, mode="a")
response_handler.setFormatter(logging.Formatter("%(asctime)s - %(message)s"))
response_logger.addHandler(response_handler)
response_logger.setLevel(logging.INFO)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
# Initialize tokenizer for precise chunking
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_all_pages(file_path: str, progress_callback=None) -> str:
cache_key = f"pdf_{file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
batch_size = 5
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
text_chunks = [""] * total_pages
processed_pages = 0
def extract_batch(start: int, end: int) -> List[tuple]:
results = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start:end]:
page_num = start + pdf.pages.index(page)
page_text = page.extract_text_simple() or ""
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
return results
with ProcessPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
for future in as_completed(futures):
for page_num, text in future.result():
text_chunks[page_num] = text
processed_pages += batch_size
if progress_callback:
progress_callback(min(processed_pages, total_pages), total_pages)
result = "\n\n".join(filter(None, text_chunks))
cache[cache_key] = result
return result
except Exception as e:
logger.error("PDF processing error: %s", e)
return f"PDF processing error: {str(e)}"
def excel_to_json(file_path: str) -> List[Dict]:
cache_key = f"excel_{file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
table = pq.read_table(file_path)
df = table.to_pandas(use_threads=True, split_blocks=True)
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
result = [{
"filename": os.path.basename(file_path),
"rows": content,
"type": "excel"
}]
cache[cache_key] = result
return result
except Exception as e:
logger.error(f"Error processing Excel file: {e}")
return [{"error": f"Error processing Excel file: {str(e)}"}]
def csv_to_json(file_path: str) -> List[Dict]:
cache_key = f"csv_{file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
table = pc.read_csv(file_path, parse_options=pc.ParseOptions(invalid_row_handler=lambda x: "skip"))
df = table.to_pandas(use_threads=True, split_blocks=True)
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
result = [{
"filename": os.path.basename(file_path),
"rows": content,
"type": "csv"
}]
cache[cache_key] = result
return result
except Exception as e:
logger.error(f"Error processing CSV file: {e}")
return [{"error": f"Error processing CSV file: {str(e)}"}]
def process_file(file_path: str, file_type: str) -> List[Dict]:
try:
if file_type == "pdf":
text = extract_all_pages(file_path)
return [{
"filename": os.path.basename(file_path),
"content": text,
"status": "initial",
"type": "pdf"
}]
elif file_type in ["xls", "xlsx"]:
return excel_to_json(file_path)
elif file_type == "csv":
return csv_to_json(file_path)
else:
return [{"error": f"Unsupported file type: {file_type}"}]
except Exception as e:
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
def tokenize_and_chunk(text: str, max_tokens: int = 800) -> List[str]:
cache_key = f"tokens_{hashlib.md5(text.encode()).hexdigest()}"
if cache_key in cache:
return cache[cache_key]
tokens = tokenizer.encode(text, add_special_tokens=False)
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk_tokens = tokens[i:i + max_tokens]
chunks.append(tokenizer.decode(chunk_tokens, skip_special_tokens=True))
cache[cache_key] = chunks
return chunks
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=0.1)
mem = psutil.virtual_memory()
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
except Exception as e:
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
diagnoses = []
lines = text.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
text = " ".join(diagnoses)
text = re.sub(r"\s+", " ", text).strip()
text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
return text if text else ""
def summarize_findings(combined_response: str) -> str:
chunks = combined_response.split("--- Analysis for Chunk")
diagnoses = []
for chunk in chunks:
chunk = chunk.strip()
if not chunk or "No oversights identified" in chunk:
continue
lines = chunk.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
seen = set()
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
if not unique_diagnoses:
return "No missed diagnoses were identified in the provided records."
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
if len(unique_diagnoses) > 1:
summary += f", and {unique_diagnoses[-1]}"
elif len(unique_diagnoses) == 1:
summary = "Missed diagnoses include " + unique_diagnoses[0]
summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
return summary.strip()
def init_agent():
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
llm = LLM(
model="mims-harvard/TxAgent-T1-Llama-3.1-8B",
gpu_memory_utilization=0.8,
max_model_len=2048,
tensor_parallel_size=1,
)
sampling_params = SamplingParams(
temperature=0.2,
max_tokens=256, # Reduced for faster streaming
stop=["</s>", "[INST]"],
)
log_system_usage("After Load")
logger.info("Agent Ready")
return llm, sampling_params
async def create_ui(llm, sampling_params):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
file_upload = gr.File(file_types=["pdf", "csv", "xls", "xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
progress_bar = gr.Progress()
prompt_template = """
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
def log_response_partial(text: str):
response_logger.info(text)
async def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
history.append({"role": "user", "content": message})
yield history, None, ""
extracted = []
file_hash_value = ""
if files:
with ProcessPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
file_type = f.name.split(".")[-1].lower()
futures.append(executor.submit(
process_file,
f.name,
file_type
))
for future in as_completed(futures):
try:
extracted.extend(future.result())
except Exception as e:
logger.error(f"File processing error: {e}")
extracted.append({"error": f"Error processing file: {str(e)}"})
file_hash_value = file_hash(files[0].name) if files else ""
history.append({"role": "assistant", "content": "✅ File processing complete"})
yield history, None, ""
text_content = "\n".join(json.dumps(item) for item in extracted)
chunks = tokenize_and_chunk(text_content)
combined_response = ""
batch_size = 1
try:
for batch_idx in range(0, len(chunks), batch_size):
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
batch_prompts = [
prompt_template.format(
batch_idx + i + 1,
len(chunks),
chunk=chunk[:800]
)
for i, chunk in enumerate(batch_chunks)
]
progress((batch_idx) / len(chunks),
desc=f"Analyzing batch {(batch_idx // batch_size) + 1}/{(len(chunks) + batch_size - 1) // batch_size}")
with torch.no_grad():
for prompt in batch_prompts:
chunk_response = ""
current_response = ""
stream = llm.generate([prompt], sampling_params, use_tqdm=False)
for output in stream:
for request_output in output:
new_text = request_output.outputs[0].text[len(current_response):]
if new_text:
current_response += new_text
cleaned = clean_response(current_response)
if cleaned and cleaned != chunk_response:
chunk_response = cleaned
history[-1] = {"role": "assistant", "content": chunk_response}
threading.Thread(target=log_response_partial, args=(chunk_response,)).start()
yield history, None, ""
await asyncio.sleep(0.01) # Prevent UI blocking
if chunk_response:
combined_response += f"--- Analysis for Chunk {batch_idx + 1} ---\n{chunk_response}\n"
torch.cuda.empty_cache()
gc.collect()
summary = summarize_findings(combined_response)
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response + "\n\n" + summary)
threading.Thread(target=log_response_partial, args=(summary,)).start()
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
except Exception as e:
logger.error("Analysis error: %s", e)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
threading.Thread(target=log_response_partial, args=(f"Error: {str(e)}",)).start()
yield history, None, f"Error occurred during analysis: {str(e)}"
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary], _js="() => {return {streaming: true}}")
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary], _js="() => {return {streaming: true}}")
return demo
if __name__ == "__main__":
try:
logger.info("Launching app...")
llm, sampling_params = init_agent()
demo = asyncio.run(create_ui(llm, sampling_params))
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group() |