File size: 19,322 Bytes
f394b25
 
 
 
499e72e
f394b25
44280bd
e12aa83
f394b25
 
 
499e72e
 
44280bd
fb2ccc1
f394b25
44280bd
a71a831
 
 
 
 
 
 
499e72e
 
 
 
a71a831
499e72e
 
 
 
 
3cd3468
c10ba83
 
 
fcebf54
c10ba83
3cd3468
44280bd
 
 
 
 
 
650fb34
 
 
fb2ccc1
a71a831
 
44280bd
a71a831
 
 
44280bd
a71a831
499e72e
828effe
fb2ccc1
 
 
 
 
 
44280bd
fb2ccc1
 
44280bd
a71a831
02a4d5e
44280bd
fb2ccc1
 
a71a831
44280bd
 
02a4d5e
 
44280bd
 
fb2ccc1
44280bd
fb2ccc1
 
 
44280bd
fb2ccc1
 
 
44280bd
fb2ccc1
a71a831
fb2ccc1
d88209d
02a4d5e
fb2ccc1
a71a831
02a4d5e
 
44280bd
02a4d5e
 
 
a71a831
 
fb2ccc1
44280bd
 
 
 
fb2ccc1
44280bd
 
d88209d
44280bd
 
 
 
 
 
fb2ccc1
 
 
 
 
499e72e
 
 
 
 
 
fb2ccc1
 
 
 
 
499e72e
 
44280bd
02a4d5e
 
499e72e
a71a831
499e72e
 
 
44280bd
499e72e
 
 
02a4d5e
499e72e
 
 
 
 
 
02a4d5e
499e72e
02a4d5e
a71a831
 
44280bd
499e72e
44280bd
02a4d5e
44280bd
 
 
02a4d5e
44280bd
02a4d5e
 
499e72e
44280bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650fb34
fb2ccc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
44280bd
02a4d5e
499e72e
44280bd
499e72e
 
 
 
 
e12aa83
 
 
499e72e
e12aa83
02a4d5e
 
e12aa83
499e72e
a71a831
e12aa83
499e72e
02a4d5e
e12aa83
a71a831
fb2ccc1
 
 
44280bd
 
fb2ccc1
 
650fb34
fb2ccc1
650fb34
 
 
 
 
 
44280bd
650fb34
fb2ccc1
44280bd
650fb34
02a4d5e
650fb34
fb2ccc1
 
 
650fb34
 
fb2ccc1
 
650fb34
 
fb2ccc1
 
650fb34
fb2ccc1
 
 
 
650fb34
 
 
 
 
 
 
 
 
 
 
 
fb2ccc1
 
 
 
 
 
 
650fb34
fb2ccc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44280bd
 
fb2ccc1
499e72e
44280bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2ccc1
44280bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2ccc1
44280bd
 
 
 
fb2ccc1
44280bd
 
 
 
 
 
 
 
 
 
 
 
 
fb2ccc1
 
 
 
 
 
 
 
44280bd
 
 
 
 
 
 
 
 
 
fb2ccc1
44280bd
76162fc
44280bd
fb2ccc1
44280bd
 
 
 
 
 
 
 
 
 
 
 
 
499e72e
44280bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
55e3db0
f394b25
02a4d5e
fb2ccc1
 
 
 
 
 
 
02a4d5e
 
44280bd
 
 
 
02a4d5e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Tuple, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
from datetime import datetime
import tiktoken

# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Constants
MEDICAL_KEYWORDS = {
    'diagnosis', 'assessment', 'plan', 'results', 'medications',
    'allergies', 'summary', 'impression', 'findings', 'recommendations',
    'conclusion', 'history', 'examination', 'progress', 'discharge'
}
TOKENIZER = "cl100k_base"
MAX_MODEL_LEN = 2048  # Matches your model's actual limit
TARGET_CHUNK_TOKENS = 1500  # Leaves room for prompt and response
MEDICAL_SECTION_HEADER = "=== MEDICAL SECTION ==="

def sanitize_utf8(text: str) -> str:
    """Ensure text is UTF-8 clean."""
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    """Generate MD5 hash of file content."""
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def count_tokens(text: str) -> int:
    """Count tokens using the same method as the model"""
    encoding = tiktoken.get_encoding(TOKENIZER)
    return len(encoding.encode(text))

def extract_all_pages_with_token_count(file_path: str) -> Tuple[str, int, int]:
    """
    Extract all pages from PDF with token counting.
    Returns (extracted_text, total_pages, total_tokens)
    """
    try:
        text_chunks = []
        total_pages = 0
        total_tokens = 0
        
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
            
            for i, page in enumerate(pdf.pages):
                page_text = page.extract_text() or ""
                lower_text = page_text.lower()
                
                # Mark medical sections
                if any(re.search(rf'\b{kw}\b', lower_text) for kw in MEDICAL_KEYWORDS):
                    section_header = f"\n{MEDICAL_SECTION_HEADER} (Page {i+1})\n"
                    text_chunks.append(section_header + page_text.strip())
                    total_tokens += count_tokens(section_header)
                else:
                    text_chunks.append(f"\n=== Page {i+1} ===\n{page_text.strip()}")
                
                total_tokens += count_tokens(page_text)
        
        return "\n".join(text_chunks), total_pages, total_tokens
    except Exception as e:
        return f"PDF processing error: {str(e)}", 0, 0

def convert_file_to_json(file_path: str, file_type: str) -> str:
    """Convert file to JSON format with caching and token counting."""
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text, total_pages, total_tokens = extract_all_pages_with_token_count(file_path)
            result = json.dumps({
                "filename": os.path.basename(file_path),
                "content": text,
                "total_pages": total_pages,
                "total_tokens": total_tokens,
                "status": "complete"
            })
        elif file_type == "csv":
            # Read CSV in chunks to handle large files
            chunks = []
            for chunk in pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                                   skip_blank_lines=False, on_bad_lines="skip", chunksize=1000):
                chunks.append(chunk.fillna("").astype(str).values.tolist())
            content = [item for sublist in chunks for item in sublist]
            result = json.dumps({
                "filename": os.path.basename(file_path),
                "rows": content,
                "total_tokens": count_tokens(str(content))
            })
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({
                "filename": os.path.basename(file_path),
                "rows": content,
                "total_tokens": count_tokens(str(content))
            })
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})

        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    """Log system resource usage."""
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")

def clean_response(text: str) -> str:
    """Clean and format the model response."""
    text = sanitize_utf8(text)
    # Remove tool calls and JSON artifacts
    text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
    text = re.sub(r"\['get_[^\]]+\']\n?", "", text)
    text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)
    # Remove repetitive phrases
    text = re.sub(r"To analyze the medical records for clinical oversights.*?begin by reviewing.*?\n", "", text, flags=re.DOTALL)
    # Collapse excessive newlines
    text = re.sub(r"\n{3,}", "\n\n", text).strip()
    return text

def format_final_report(analysis_results: List[str], filename: str) -> str:
    """Combine all analysis chunks into a well-formatted final report."""
    report = []
    report.append(f"COMPREHENSIVE CLINICAL OVERSIGHT ANALYSIS")
    report.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
    report.append(f"File: {filename}")
    report.append("=" * 80)
    
    # Extract sections from all chunks
    sections = {
        "CRITICAL FINDINGS": [],
        "MISSED DIAGNOSES": [],
        "MEDICATION ISSUES": [],
        "ASSESSMENT GAPS": [],
        "FOLLOW-UP RECOMMENDATIONS": []
    }
    
    for result in analysis_results:
        for section in sections:
            # Find section content using regex
            section_match = re.search(
                rf"{re.escape(section)}:?\s*\n([^*]+?)(?=\n\*|\n\n|$)", 
                result, 
                re.IGNORECASE | re.DOTALL
            )
            if section_match:
                content = section_match.group(1).strip()
                if content and content not in sections[section]:
                    sections[section].append(content)
    
    # Build the final report - prioritize critical findings
    if sections["CRITICAL FINDINGS"]:
        report.append("\n🚨 **CRITICAL FINDINGS** 🚨")
        for content in sections["CRITICAL FINDINGS"]:
            report.append(f"\n{content}")
    
    # Add other sections
    for section, contents in sections.items():
        if section != "CRITICAL FINDINGS" and contents:
            report.append(f"\n**{section.upper()}**")
            for content in contents:
                report.append(f"\n{content}")
    
    if not any(sections.values()):
        report.append("\nNo significant clinical oversights identified.")
    
    report.append("\n" + "=" * 80)
    report.append("END OF REPORT")
    
    return "\n".join(report)

def split_content_by_tokens(content: str, max_tokens: int = TARGET_CHUNK_TOKENS) -> List[str]:
    """Split content into chunks that fit within token limits"""
    paragraphs = re.split(r"\n\s*\n", content)
    chunks = []
    current_chunk = []
    current_tokens = 0
    
    for para in paragraphs:
        para_tokens = count_tokens(para)
        if para_tokens > max_tokens:
            # Handle very long paragraphs by splitting sentences
            sentences = re.split(r'(?<=[.!?])\s+', para)
            for sent in sentences:
                sent_tokens = count_tokens(sent)
                if current_tokens + sent_tokens > max_tokens:
                    chunks.append("\n\n".join(current_chunk))
                    current_chunk = [sent]
                    current_tokens = sent_tokens
                else:
                    current_chunk.append(sent)
                    current_tokens += sent_tokens
        elif current_tokens + para_tokens > max_tokens:
            chunks.append("\n\n".join(current_chunk))
            current_chunk = [para]
            current_tokens = para_tokens
        else:
            current_chunk.append(para)
            current_tokens += para_tokens
    
    if current_chunk:
        chunks.append("\n\n".join(current_chunk))
    
    return chunks

def init_agent():
    """Initialize the TxAgent with proper configuration."""
    print("πŸ” Initializing model...")
    log_system_usage("Before Load")
    
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=2,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    print("βœ… Agent Ready")
    return agent

def analyze_complete_document(content: str, filename: str, agent: TxAgent) -> str:
    """Analyze complete document with proper chunking and token management"""
    chunks = split_content_by_tokens(content)
    analysis_results = []
    
    for i, chunk in enumerate(chunks):
        try:
            # Create minimal prompt to save tokens
            prompt = f"""
Analyze this medical record section for:
1. Critical findings (urgent)
2. Missed diagnoses (with evidence)
3. Medication issues
4. Assessment gaps
5. Follow-up needs

Content:
{chunk}

Concise findings only:
"""
            # Verify we're within token limits
            prompt_tokens = count_tokens(prompt)
            chunk_tokens = count_tokens(chunk)
            
            if prompt_tokens + chunk_tokens > MAX_MODEL_LEN - 512:  # Leave room for response
                # Find a natural truncation point
                adjusted_chunk = ""
                tokens_used = 0
                max_content_tokens = MAX_MODEL_LEN - prompt_tokens - 512
                
                for para in re.split(r"\n\s*\n", chunk):
                    para_tokens = count_tokens(para)
                    if tokens_used + para_tokens <= max_content_tokens:
                        adjusted_chunk += "\n\n" + para
                        tokens_used += para_tokens
                    else:
                        break
                
                if not adjusted_chunk:
                    # If even one paragraph is too long, split sentences
                    sentences = re.split(r'(?<=[.!?])\s+', chunk)
                    for sent in sentences:
                        sent_tokens = count_tokens(sent)
                        if tokens_used + sent_tokens <= max_content_tokens:
                            adjusted_chunk += " " + sent
                            tokens_used += sent_tokens
                        else:
                            break
                
                chunk = adjusted_chunk.strip()
            
            response = ""
            for output in agent.run_gradio_chat(
                message=prompt,
                history=[],
                temperature=0.1,
                max_new_tokens=512,  # Keep responses concise
                max_token=MAX_MODEL_LEN,
                call_agent=False,
                conversation=[],
            ):
                if output:
                    if isinstance(output, list):
                        for m in output:
                            if hasattr(m, 'content'):
                                response += clean_response(m.content)
                    elif isinstance(output, str):
                        response += clean_response(output)
            
            if response:
                analysis_results.append(response)
        except Exception as e:
            print(f"Error processing chunk {i}: {str(e)}")
            continue
    
    return format_final_report(analysis_results, filename)

def create_ui(agent):
    """Create the Gradio interface."""
    with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
        gr.Markdown("""
        <h1 style='text-align: center;'>🩺 Comprehensive Clinical Oversight Assistant</h1>
        <p style='text-align: center;'>Analyze complete medical records for potential oversights</p>
        """)
        
        with gr.Row():
            with gr.Column(scale=3):
                file_upload = gr.File(
                    file_types=[".pdf", ".csv", ".xls", ".xlsx"], 
                    file_count="multiple",
                    label="Upload Medical Records"
                )
                msg_input = gr.Textbox(
                    placeholder="Optional: Add specific focus areas or questions...",
                    label="Analysis Focus"
                )
                with gr.Row():
                    send_btn = gr.Button("Analyze Complete Documents", variant="primary")
                    clear_btn = gr.Button("Clear")
                status = gr.Textbox(label="Status", interactive=False)
            
            with gr.Column(scale=7):
                report_output = gr.Textbox(
                    label="Clinical Oversight Report",
                    lines=20,
                    max_lines=50,
                    interactive=False
                )
                download_output = gr.File(
                    label="Download Full Report",
                    visible=False
                )
        
        def analyze(files: List, message: str):
            """Process files and generate analysis."""
            if not files:
                yield "", None, "⚠️ Please upload at least one file to analyze."
                return
            
            yield "", None, "⏳ Processing documents (this may take several minutes for large files)..."
            
            # Process all files completely
            file_contents = []
            filenames = []
            total_tokens = 0
            
            with ThreadPoolExecutor(max_workers=4) as executor:
                futures = []
                for f in files:
                    futures.append(executor.submit(
                        convert_file_to_json, 
                        f.name, 
                        f.name.split(".")[-1].lower()
                    ))
                    filenames.append(os.path.basename(f.name))
                
                results = []
                for future in as_completed(futures):
                    result = sanitize_utf8(future.result())
                    results.append(result)
                    try:
                        data = json.loads(result)
                        if "total_tokens" in data:
                            total_tokens += data["total_tokens"]
                    except:
                        pass
                
                file_contents = results
            
            combined_filename = " + ".join(filenames)
            combined_content = "\n".join([
                json.loads(fc).get("content", "") if "content" in json.loads(fc) 
                else str(json.loads(fc).get("rows", "")) 
                for fc in file_contents
            ])
            
            yield "", None, f"πŸ” Analyzing content ({total_tokens//1000}k tokens)..."
            
            try:
                # Process the complete document
                full_report = analyze_complete_document(
                    combined_content, 
                    combined_filename, 
                    agent
                )
                
                # Save report to file
                file_hash_value = hashlib.md5(combined_content.encode()).hexdigest()
                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
                with open(report_path, "w", encoding="utf-8") as f:
                    f.write(full_report)
                
                yield full_report, report_path if os.path.exists(report_path) else None, "βœ… Analysis complete!"
            
            except Exception as e:
                error_msg = f"❌ Error during analysis: {str(e)}"
                print(error_msg)
                yield "", None, error_msg
        
        # UI event handlers
        send_btn.click(
            fn=analyze,
            inputs=[file_upload, msg_input],
            outputs=[report_output, download_output, status],
            api_name="analyze"
        )
        
        clear_btn.click(
            fn=lambda: ("", None, ""),
            inputs=None,
            outputs=[report_output, download_output, status]
        )
    
    return demo

if __name__ == "__main__":
    print("πŸš€ Launching app...")
    # Install tiktoken if not available
    try:
        import tiktoken
    except ImportError:
        print("Installing tiktoken...")
        subprocess.run([sys.executable, "-m", "pip", "install", "tiktoken"])
    
    agent = init_agent()
    demo = create_ui(agent)
    demo.queue(
        api_open=False,
        max_size=20
    ).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )