File size: 19,322 Bytes
f394b25 499e72e f394b25 44280bd e12aa83 f394b25 499e72e 44280bd fb2ccc1 f394b25 44280bd a71a831 499e72e a71a831 499e72e 3cd3468 c10ba83 fcebf54 c10ba83 3cd3468 44280bd 650fb34 fb2ccc1 a71a831 44280bd a71a831 44280bd a71a831 499e72e 828effe fb2ccc1 44280bd fb2ccc1 44280bd a71a831 02a4d5e 44280bd fb2ccc1 a71a831 44280bd 02a4d5e 44280bd fb2ccc1 44280bd fb2ccc1 44280bd fb2ccc1 44280bd fb2ccc1 a71a831 fb2ccc1 d88209d 02a4d5e fb2ccc1 a71a831 02a4d5e 44280bd 02a4d5e a71a831 fb2ccc1 44280bd fb2ccc1 44280bd d88209d 44280bd fb2ccc1 499e72e fb2ccc1 499e72e 44280bd 02a4d5e 499e72e a71a831 499e72e 44280bd 499e72e 02a4d5e 499e72e 02a4d5e 499e72e 02a4d5e a71a831 44280bd 499e72e 44280bd 02a4d5e 44280bd 02a4d5e 44280bd 02a4d5e 499e72e 44280bd 650fb34 fb2ccc1 a71a831 44280bd 02a4d5e 499e72e 44280bd 499e72e e12aa83 499e72e e12aa83 02a4d5e e12aa83 499e72e a71a831 e12aa83 499e72e 02a4d5e e12aa83 a71a831 fb2ccc1 44280bd fb2ccc1 650fb34 fb2ccc1 650fb34 44280bd 650fb34 fb2ccc1 44280bd 650fb34 02a4d5e 650fb34 fb2ccc1 650fb34 fb2ccc1 650fb34 fb2ccc1 650fb34 fb2ccc1 650fb34 fb2ccc1 650fb34 fb2ccc1 44280bd fb2ccc1 499e72e 44280bd fb2ccc1 44280bd fb2ccc1 44280bd fb2ccc1 44280bd fb2ccc1 44280bd fb2ccc1 44280bd 76162fc 44280bd fb2ccc1 44280bd 499e72e 44280bd a71a831 55e3db0 f394b25 02a4d5e fb2ccc1 02a4d5e 44280bd 02a4d5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Tuple, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
from datetime import datetime
import tiktoken
# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations',
'conclusion', 'history', 'examination', 'progress', 'discharge'
}
TOKENIZER = "cl100k_base"
MAX_MODEL_LEN = 2048 # Matches your model's actual limit
TARGET_CHUNK_TOKENS = 1500 # Leaves room for prompt and response
MEDICAL_SECTION_HEADER = "=== MEDICAL SECTION ==="
def sanitize_utf8(text: str) -> str:
"""Ensure text is UTF-8 clean."""
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
"""Generate MD5 hash of file content."""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def count_tokens(text: str) -> int:
"""Count tokens using the same method as the model"""
encoding = tiktoken.get_encoding(TOKENIZER)
return len(encoding.encode(text))
def extract_all_pages_with_token_count(file_path: str) -> Tuple[str, int, int]:
"""
Extract all pages from PDF with token counting.
Returns (extracted_text, total_pages, total_tokens)
"""
try:
text_chunks = []
total_pages = 0
total_tokens = 0
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
for i, page in enumerate(pdf.pages):
page_text = page.extract_text() or ""
lower_text = page_text.lower()
# Mark medical sections
if any(re.search(rf'\b{kw}\b', lower_text) for kw in MEDICAL_KEYWORDS):
section_header = f"\n{MEDICAL_SECTION_HEADER} (Page {i+1})\n"
text_chunks.append(section_header + page_text.strip())
total_tokens += count_tokens(section_header)
else:
text_chunks.append(f"\n=== Page {i+1} ===\n{page_text.strip()}")
total_tokens += count_tokens(page_text)
return "\n".join(text_chunks), total_pages, total_tokens
except Exception as e:
return f"PDF processing error: {str(e)}", 0, 0
def convert_file_to_json(file_path: str, file_type: str) -> str:
"""Convert file to JSON format with caching and token counting."""
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text, total_pages, total_tokens = extract_all_pages_with_token_count(file_path)
result = json.dumps({
"filename": os.path.basename(file_path),
"content": text,
"total_pages": total_pages,
"total_tokens": total_tokens,
"status": "complete"
})
elif file_type == "csv":
# Read CSV in chunks to handle large files
chunks = []
for chunk in pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip", chunksize=1000):
chunks.append(chunk.fillna("").astype(str).values.tolist())
content = [item for sublist in chunks for item in sublist]
result = json.dumps({
"filename": os.path.basename(file_path),
"rows": content,
"total_tokens": count_tokens(str(content))
})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({
"filename": os.path.basename(file_path),
"rows": content,
"total_tokens": count_tokens(str(content))
})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
"""Log system resource usage."""
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
"""Clean and format the model response."""
text = sanitize_utf8(text)
# Remove tool calls and JSON artifacts
text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
text = re.sub(r"\['get_[^\]]+\']\n?", "", text)
text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)
# Remove repetitive phrases
text = re.sub(r"To analyze the medical records for clinical oversights.*?begin by reviewing.*?\n", "", text, flags=re.DOTALL)
# Collapse excessive newlines
text = re.sub(r"\n{3,}", "\n\n", text).strip()
return text
def format_final_report(analysis_results: List[str], filename: str) -> str:
"""Combine all analysis chunks into a well-formatted final report."""
report = []
report.append(f"COMPREHENSIVE CLINICAL OVERSIGHT ANALYSIS")
report.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
report.append(f"File: {filename}")
report.append("=" * 80)
# Extract sections from all chunks
sections = {
"CRITICAL FINDINGS": [],
"MISSED DIAGNOSES": [],
"MEDICATION ISSUES": [],
"ASSESSMENT GAPS": [],
"FOLLOW-UP RECOMMENDATIONS": []
}
for result in analysis_results:
for section in sections:
# Find section content using regex
section_match = re.search(
rf"{re.escape(section)}:?\s*\n([^*]+?)(?=\n\*|\n\n|$)",
result,
re.IGNORECASE | re.DOTALL
)
if section_match:
content = section_match.group(1).strip()
if content and content not in sections[section]:
sections[section].append(content)
# Build the final report - prioritize critical findings
if sections["CRITICAL FINDINGS"]:
report.append("\nπ¨ **CRITICAL FINDINGS** π¨")
for content in sections["CRITICAL FINDINGS"]:
report.append(f"\n{content}")
# Add other sections
for section, contents in sections.items():
if section != "CRITICAL FINDINGS" and contents:
report.append(f"\n**{section.upper()}**")
for content in contents:
report.append(f"\n{content}")
if not any(sections.values()):
report.append("\nNo significant clinical oversights identified.")
report.append("\n" + "=" * 80)
report.append("END OF REPORT")
return "\n".join(report)
def split_content_by_tokens(content: str, max_tokens: int = TARGET_CHUNK_TOKENS) -> List[str]:
"""Split content into chunks that fit within token limits"""
paragraphs = re.split(r"\n\s*\n", content)
chunks = []
current_chunk = []
current_tokens = 0
for para in paragraphs:
para_tokens = count_tokens(para)
if para_tokens > max_tokens:
# Handle very long paragraphs by splitting sentences
sentences = re.split(r'(?<=[.!?])\s+', para)
for sent in sentences:
sent_tokens = count_tokens(sent)
if current_tokens + sent_tokens > max_tokens:
chunks.append("\n\n".join(current_chunk))
current_chunk = [sent]
current_tokens = sent_tokens
else:
current_chunk.append(sent)
current_tokens += sent_tokens
elif current_tokens + para_tokens > max_tokens:
chunks.append("\n\n".join(current_chunk))
current_chunk = [para]
current_tokens = para_tokens
else:
current_chunk.append(para)
current_tokens += para_tokens
if current_chunk:
chunks.append("\n\n".join(current_chunk))
return chunks
def init_agent():
"""Initialize the TxAgent with proper configuration."""
print("π Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=2,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
print("β
Agent Ready")
return agent
def analyze_complete_document(content: str, filename: str, agent: TxAgent) -> str:
"""Analyze complete document with proper chunking and token management"""
chunks = split_content_by_tokens(content)
analysis_results = []
for i, chunk in enumerate(chunks):
try:
# Create minimal prompt to save tokens
prompt = f"""
Analyze this medical record section for:
1. Critical findings (urgent)
2. Missed diagnoses (with evidence)
3. Medication issues
4. Assessment gaps
5. Follow-up needs
Content:
{chunk}
Concise findings only:
"""
# Verify we're within token limits
prompt_tokens = count_tokens(prompt)
chunk_tokens = count_tokens(chunk)
if prompt_tokens + chunk_tokens > MAX_MODEL_LEN - 512: # Leave room for response
# Find a natural truncation point
adjusted_chunk = ""
tokens_used = 0
max_content_tokens = MAX_MODEL_LEN - prompt_tokens - 512
for para in re.split(r"\n\s*\n", chunk):
para_tokens = count_tokens(para)
if tokens_used + para_tokens <= max_content_tokens:
adjusted_chunk += "\n\n" + para
tokens_used += para_tokens
else:
break
if not adjusted_chunk:
# If even one paragraph is too long, split sentences
sentences = re.split(r'(?<=[.!?])\s+', chunk)
for sent in sentences:
sent_tokens = count_tokens(sent)
if tokens_used + sent_tokens <= max_content_tokens:
adjusted_chunk += " " + sent
tokens_used += sent_tokens
else:
break
chunk = adjusted_chunk.strip()
response = ""
for output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.1,
max_new_tokens=512, # Keep responses concise
max_token=MAX_MODEL_LEN,
call_agent=False,
conversation=[],
):
if output:
if isinstance(output, list):
for m in output:
if hasattr(m, 'content'):
response += clean_response(m.content)
elif isinstance(output, str):
response += clean_response(output)
if response:
analysis_results.append(response)
except Exception as e:
print(f"Error processing chunk {i}: {str(e)}")
continue
return format_final_report(analysis_results, filename)
def create_ui(agent):
"""Create the Gradio interface."""
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("""
<h1 style='text-align: center;'>π©Ί Comprehensive Clinical Oversight Assistant</h1>
<p style='text-align: center;'>Analyze complete medical records for potential oversights</p>
""")
with gr.Row():
with gr.Column(scale=3):
file_upload = gr.File(
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
label="Upload Medical Records"
)
msg_input = gr.Textbox(
placeholder="Optional: Add specific focus areas or questions...",
label="Analysis Focus"
)
with gr.Row():
send_btn = gr.Button("Analyze Complete Documents", variant="primary")
clear_btn = gr.Button("Clear")
status = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=7):
report_output = gr.Textbox(
label="Clinical Oversight Report",
lines=20,
max_lines=50,
interactive=False
)
download_output = gr.File(
label="Download Full Report",
visible=False
)
def analyze(files: List, message: str):
"""Process files and generate analysis."""
if not files:
yield "", None, "β οΈ Please upload at least one file to analyze."
return
yield "", None, "β³ Processing documents (this may take several minutes for large files)..."
# Process all files completely
file_contents = []
filenames = []
total_tokens = 0
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
futures.append(executor.submit(
convert_file_to_json,
f.name,
f.name.split(".")[-1].lower()
))
filenames.append(os.path.basename(f.name))
results = []
for future in as_completed(futures):
result = sanitize_utf8(future.result())
results.append(result)
try:
data = json.loads(result)
if "total_tokens" in data:
total_tokens += data["total_tokens"]
except:
pass
file_contents = results
combined_filename = " + ".join(filenames)
combined_content = "\n".join([
json.loads(fc).get("content", "") if "content" in json.loads(fc)
else str(json.loads(fc).get("rows", ""))
for fc in file_contents
])
yield "", None, f"π Analyzing content ({total_tokens//1000}k tokens)..."
try:
# Process the complete document
full_report = analyze_complete_document(
combined_content,
combined_filename,
agent
)
# Save report to file
file_hash_value = hashlib.md5(combined_content.encode()).hexdigest()
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
with open(report_path, "w", encoding="utf-8") as f:
f.write(full_report)
yield full_report, report_path if os.path.exists(report_path) else None, "β
Analysis complete!"
except Exception as e:
error_msg = f"β Error during analysis: {str(e)}"
print(error_msg)
yield "", None, error_msg
# UI event handlers
send_btn.click(
fn=analyze,
inputs=[file_upload, msg_input],
outputs=[report_output, download_output, status],
api_name="analyze"
)
clear_btn.click(
fn=lambda: ("", None, ""),
inputs=None,
outputs=[report_output, download_output, status]
)
return demo
if __name__ == "__main__":
print("π Launching app...")
# Install tiktoken if not available
try:
import tiktoken
except ImportError:
print("Installing tiktoken...")
subprocess.run([sys.executable, "-m", "pip", "install", "tiktoken"])
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
) |