File size: 13,606 Bytes
f394b25 499e72e f394b25 44280bd e12aa83 f394b25 499e72e 44280bd fb2ccc1 f394b25 44280bd a71a831 499e72e a71a831 cc93544 499e72e 3cd3468 cc93544 c10ba83 fcebf54 c10ba83 3cd3468 44280bd 650fb34 cc93544 cf765da cc93544 fb2ccc1 a71a831 63d0c23 b33bf6c 63d0c23 a71a831 63d0c23 a71a831 499e72e 828effe 63d0c23 fb2ccc1 63d0c23 fb2ccc1 a71a831 02a4d5e 44280bd fb2ccc1 a71a831 44280bd 02a4d5e 44280bd cc93544 fb2ccc1 a71a831 fb2ccc1 d88209d 63d0c23 02a4d5e a71a831 02a4d5e cc93544 a71a831 fb2ccc1 44280bd fb2ccc1 44280bd d88209d 44280bd cc93544 44280bd cc93544 fb2ccc1 499e72e cc93544 499e72e 63d0c23 fb2ccc1 499e72e 02a4d5e 499e72e a71a831 499e72e 63d0c23 a71a831 499e72e cc93544 87babf2 cc93544 63d0c23 44280bd cc93544 63d0c23 cc93544 44280bd cc93544 44280bd cc93544 44280bd cc93544 44280bd 63d0c23 cc93544 fb2ccc1 cc93544 fb2ccc1 cc93544 fb2ccc1 cc93544 fb2ccc1 cc93544 fb2ccc1 63d0c23 2416301 cc93544 2416301 87babf2 2416301 63d0c23 2416301 cc93544 fb2ccc1 67f566e fb2ccc1 cc93544 fb2ccc1 2416301 cf765da fb2ccc1 cc93544 fb2ccc1 cc93544 fb2ccc1 cc93544 fb2ccc1 cc93544 63d0c23 44280bd cc93544 44280bd cc93544 44280bd cc93544 44280bd cc93544 63d0c23 cc93544 a71a831 55e3db0 f394b25 02a4d5e fb2ccc1 87babf2 02a4d5e 87babf2 63d0c23 87babf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Tuple, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
from datetime import datetime
import tiktoken
# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
# Environment variables
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# Add src to path
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations',
'conclusion', 'history', 'examination', 'progress', 'discharge'
}
TOKENIZER = "cl100k_base"
# Increase max model length to support larger contexts
MAX_MODEL_LEN = 4096
# Default chunk target tokens
TARGET_CHUNK_TOKENS = 1200
PROMPT_RESERVE = 100
MEDICAL_SECTION_HEADER = "=== MEDICAL SECTION ==="
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def count_tokens(text: str) -> int:
encoding = tiktoken.get_encoding(TOKENIZER)
return len(encoding.encode(text))
def extract_all_pages_with_token_count(file_path: str) -> Tuple[str, int, int]:
try:
text_chunks = []
total_pages = 0
total_tokens = 0
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
for i, page in enumerate(pdf.pages):
page_text = page.extract_text() or ""
lower_text = page_text.lower()
header = f"\n{MEDICAL_SECTION_HEADER} (Page {i+1})\n" if any(
re.search(rf'\b{kw}\b', lower_text) for kw in MEDICAL_KEYWORDS
) else f"\n=== Page {i+1} ===\n"
text_chunks.append(header + page_text.strip())
total_tokens += count_tokens(header) + count_tokens(page_text)
return "\n".join(text_chunks), total_pages, total_tokens
except Exception as e:
return f"PDF processing error: {str(e)}", 0, 0
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "pdf":
text, total_pages, total_tokens = extract_all_pages_with_token_count(file_path)
result = json.dumps({
"filename": os.path.basename(file_path),
"content": text,
"total_pages": total_pages,
"total_tokens": total_tokens,
"status": "complete"
})
elif file_type == "csv":
chunks = []
for chunk in pd.read_csv(
file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip", chunksize=1000
):
chunks.append(chunk.fillna("").astype(str).values.tolist())
content = [item for sub in chunks for item in sub]
result = json.dumps({
"filename": os.path.basename(file_path),
"rows": content,
"total_tokens": count_tokens(str(content))
})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("" ).astype(str).values.tolist()
result = json.dumps({
"filename": os.path.basename(file_path),
"rows": content,
"total_tokens": count_tokens(str(content))
})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
patterns = [
r"\[TOOL_CALLS\].*",
r"\['get_[^\]]+\']\n?",
r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?",
r"To analyze the medical records for clinical oversights.*?\n"
]
for pat in patterns:
text = re.sub(pat, "", text, flags=re.DOTALL)
return re.sub(r"\n{3,}", "\n\n", text).strip()
def format_final_report(analysis_results: List[str], filename: str) -> str:
report = [
"COMPREHENSIVE CLINICAL OVERSIGHT ANALYSIS",
f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
f"File: {filename}",
"=" * 80
]
sections = {s: [] for s in [
"CRITICAL FINDINGS", "MISSED DIAGNOSES", "MEDICATION ISSUES",
"ASSESSMENT GAPS", "FOLLOW-UP RECOMMENDATIONS"
]}
for res in analysis_results:
for sec in sections:
m = re.search(
rf"{re.escape(sec)}:?\s*
(.+?)(?=
\*|
|$)",
res, re.IGNORECASE | re.DOTALL
)
if m:
content = m.group(1).strip()
if content and content not in sections[sec]:
sections[sec].append(content)
if sections["CRITICAL FINDINGS"]:
report.append("\nπ¨ **CRITICAL FINDINGS** π¨")
report.extend(f"\n{c}" for c in sections["CRITICAL FINDINGS"])
for sec, conts in sections.items():
if sec != "CRITICAL FINDINGS" and conts:
report.append(f"\n**{sec}**")
report.extend(f"\n{c}" for c in conts)
if not any(sections.values()):
report.append("\nNo significant clinical oversights identified.")
report.append("\n" + "="*80)
report.append("END OF REPORT")
return "\n".join(report)
def split_content_by_tokens(content: str, max_tokens: int) -> List[str]:
paragraphs = re.split(r"\n\s*\n", content)
chunks, current, curr_toks = [], [], 0
for para in paragraphs:
toks = count_tokens(para)
if toks > max_tokens:
for sent in re.split(r'(?<=[.!?])\s+', para):
sent_toks = count_tokens(sent)
if curr_toks + sent_toks > max_tokens:
chunks.append("\n\n".join(current))
current, curr_toks = [sent], sent_toks
else:
current.append(sent)
curr_toks += sent_toks
elif curr_toks + toks > max_tokens:
chunks.append("\n\n".join(current))
current, curr_toks = [para], toks
else:
current.append(para)
curr_toks += toks
if current:
chunks.append("\n\n".join(current))
return chunks
def init_agent():
print("π Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=2,
seed=100,
additional_default_tools=[]
)
agent.init_model()
log_system_usage("After Load")
print("β
Agent Ready")
return agent
def analyze_complete_document(content: str, filename: str, agent: TxAgent, temperature: float = 0.3) -> str:
base_prompt = (
"Analyze for:\n1. Critical\n2. Missed DX\n3. Med issues\n4. Gaps\n5. Follow-up\n\nContent:\n"
)
prompt_toks = count_tokens(base_prompt)
max_chunk_toks = MAX_MODEL_LEN - prompt_toks - PROMPT_RESERVE
chunks = split_content_by_tokens(content, max_chunk_toks)
results = []
for i, chunk in enumerate(chunks):
try:
prompt = base_prompt + chunk
response = ""
for out in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=temperature,
max_new_tokens=300,
max_token=MAX_MODEL_LEN,
call_agent=False,
conversation=[]
):
if out:
if isinstance(out, list):
for m in out:
response += clean_response(m.content if hasattr(m, 'content') else str(m))
else:
response += clean_response(str(out))
if response:
results.append(response)
except Exception as e:
print(f"Error processing chunk {i}: {e}")
return format_final_report(results, filename)
def create_ui(agent):
with gr.Blocks(title="Clinical Oversight Assistant") as demo:
gr.Markdown("""
# π©Ί Clinical Oversight Assistant
Analyze medical records for potential oversights and generate comprehensive reports
""")
with gr.Row():
with gr.Column():
file_upload = gr.File(label="Upload Medical Records", file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(label="Analysis Focus (optional)")
temperature = gr.Slider(0.1, 1.0, value=0.3, label="Analysis Strictness")
send_btn = gr.Button("Analyze Documents", variant="primary")
clear_btn = gr.Button("Clear All")
status = gr.Textbox(label="Status", interactive=False)
with gr.Column():
report_output = gr.Textbox(label="Report", lines=20, interactive=False)
data_preview = gr.Dataframe(headers=["File", "Snippet"], interactive=False)
download_output = gr.File(label="Download Report")
def analyze(files, msg, temp):
if not files:
yield "", None, "β οΈ Please upload files.", None
return
yield "", None, "β³ Processing...", None
previews = []
contents = []
for f in files:
res = json.loads(sanitize_utf8(convert_file_to_json(f.name, os.path.splitext(f.name)[1][1:].lower())))
if "content" in res:
previews.append([res["filename"], res["content"][:200] + "..."])
contents.append(res["content"])
yield "", None, f"π Analyzing {len(contents)} docs...", previews
combined = "\n".join(contents)
report = analyze_complete_document(combined, "+".join([os.path.basename(f.name) for f in files]), agent, temp)
file_hash_val = hashlib.md5(combined.encode()).hexdigest()
path = os.path.join(report_dir, f"{file_hash_val}_report.txt")
with open(path, "w", encoding="utf-8") as rd:
rd.write(report)
yield report, path, "β
Analysis complete!", previews
send_btn.click(analyze, [file_upload, msg_input, temperature], [report_output, download_output, status, data_preview])
clear_btn.click(lambda: (None, None, "", None), None, [report_output, download_output, status, data_preview])
return demo
if __name__ == "__main__":
print("π Launching app...")
try:
import tiktoken
except ImportError:
subprocess.run([sys.executable, "-m", "pip", "install", "tiktoken"])
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False, max_size=20).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False,
allowed_paths=[report_dir]
)
|