File size: 15,768 Bytes
f75a23b f394b25 d8282f1 f75a23b f394b25 9a8092d f394b25 f75a23b 1c5bd8e d8282f1 e4d9325 d8282f1 a71a831 f75a23b a71a831 f75a23b 1c5bd8e 499e72e a71a831 f75a23b d8282f1 a71a831 d8282f1 a71a831 499e72e 828effe 1c5bd8e d8282f1 afdc6ee 9a8092d afdc6ee d8282f1 1c5bd8e d8282f1 befca65 d8282f1 befca65 d8282f1 1c5bd8e d8282f1 1c5bd8e d8282f1 1c5bd8e e4d9325 1c5bd8e 12ddaba 1c5bd8e e4d9325 1c5bd8e e4d9325 1c5bd8e befca65 f75a23b d8282f1 f75a23b d8282f1 f75a23b 9a8092d d8282f1 f75a23b d8282f1 afdc6ee d8282f1 afdc6ee d8282f1 afdc6ee d8282f1 9a8092d d8282f1 a71a831 55e3db0 f394b25 d8282f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import sys
import os
import polars as pl
import json
import gradio as gr
from typing import List, Tuple
import hashlib
import shutil
import re
from datetime import datetime
import time
import asyncio
import aiofiles
import cachetools
import logging
import markdown
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Cache for processed data
cache = cachetools.LRUCache(maxsize=100)
def file_hash(path: str) -> str:
"""Generate MD5 hash of a file."""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
"""Clean text by removing unwanted characters and normalizing."""
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
async def load_and_clean_data(file_path: str) -> pl.DataFrame:
"""Load and clean Excel data using polars."""
try:
logger.info(f"Loading Excel file: {file_path}")
df = pl.read_excel(file_path).with_columns([
pl.col(col).str.strip_chars().fill_null("").alias(col) for col in [
"Booking Number", "Form Name", "Form Item", "Item Response",
"Interviewer", "Interview Date", "Description"
]
]).filter(pl.col("Booking Number").str.starts_with("BKG"))
logger.info(f"Loaded {len(df)} records")
return df
except Exception as e:
logger.error(f"Error loading data: {str(e)}")
raise
def generate_summary(df: pl.DataFrame) -> tuple[str, dict]:
"""Generate summary statistics and interesting fact."""
symptom_counts = {}
for desc in df["Description"]:
desc = desc.lower()
if "chest discomfort" in desc:
symptom_counts["Chest Discomfort"] = symptom_counts.get("Chest Discomfort", 0) + 1
if "headaches" in desc:
symptom_counts["Headaches"] = symptom_counts.get("Headaches", 0) + 1
if "weight loss" in desc:
symptom_counts["Weight Loss"] = symptom_counts.get("Weight Loss", 0) + 1
if "back pain" in desc:
symptom_counts["Chronic Back Pain"] = symptom_counts.get("Chronic Back Pain", 0) + 1
if "cough" in desc:
symptom_counts["Persistent Cough"] = symptom_counts.get("Persistent Cough", 0) + 1
total_records = len(df)
unique_bookings = df["Booking Number"].n_unique()
interesting_fact = (
f"Chest discomfort was reported in {symptom_counts.get('Chest Discomfort', 0)} records, "
"frequently leading to ECG/lab referrals. Inconsistent follow-up documentation raises "
"concerns about potential missed cardiovascular diagnoses."
)
summary = (
f"## Summary\n\n"
f"Analyzed {total_records:,} patient records from {unique_bookings:,} unique bookings in 2023. "
f"Key findings include a high prevalence of chest discomfort ({symptom_counts.get('Chest Discomfort', 0)} instances), "
f"suggesting possible underdiagnosis of cardiovascular issues.\n\n"
f"### Interesting Fact\n{interesting_fact}\n"
)
return summary, symptom_counts
def prepare_aggregate_prompt(df: pl.DataFrame) -> str:
"""Prepare a single prompt for all patient data."""
groups = df.group_by("Booking Number").agg([
pl.col("Form Name"), pl.col("Form Item"),
pl.col("Item Response"), pl.col("Interviewer"),
pl.col("Interview Date"), pl.col("Description")
])
records = []
for booking in groups.iter_rows(named=True):
booking_id = booking["Booking Number"]
for i in range(len(booking["Form Name"])):
record = (
f"- {booking['Form Name'][i]}: {booking['Form Item'][i]} = {booking['Item Response'][i]} "
f"({booking['Interview Date'][i]} by {booking['Interviewer'][i]})\n{booking['Description'][i]}"
)
records.append(clean_response(record))
record_text = "\n".join(records)
prompt = f"""
Patient Medical History Analysis
Instructions:
Analyze the following aggregated patient data from all bookings to identify potential missed diagnoses, medication conflicts, incomplete assessments, and urgent follow-up needs across the entire dataset. Provide a comprehensive summary under the specified markdown headings. Focus on patterns and recurring issues across multiple patients.
Data:
{record_text}
### Missed Diagnoses
- ...
### Medication Conflicts
- ...
### Incomplete Assessments
- ...
### Urgent Follow-up
- ...
"""
return prompt
def init_agent():
"""Initialize TxAgent with tool configuration."""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
try:
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
except Exception as e:
logger.error(f"Failed to initialize TxAgent: {str(e)}")
raise
async def generate_report(agent, df: pl.DataFrame, file_hash_value: str) -> tuple[str, str]:
"""Generate a comprehensive markdown report."""
logger.info("Generating comprehensive report...")
report_path = os.path.join(report_dir, f"{file_hash_value}_report.md")
# Generate summary
summary, symptom_counts = generate_summary(df)
# Prepare and run aggregated analysis
prompt = prepare_aggregate_prompt(df)
full_output = ""
try:
chunk_output = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=2048,
max_token=8192,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
cleaned = clean_response(r.content)
chunk_output += cleaned + "\n"
elif isinstance(result, str):
cleaned = clean_response(result)
chunk_output += cleaned + "\n"
full_output = chunk_output.strip()
yield full_output, None # Stream partial results
# Filter out empty sections
sections = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"]
filtered_output = []
current_section = None
for line in full_output.split("\n"):
if any(line.startswith(f"### {section}") for section in sections):
current_section = line
filtered_output.append(line)
elif current_section and line.strip().startswith("-") and line.strip() != "- ...":
filtered_output.append(line)
# Compile final report
final_output = summary + "## Clinical Findings\n\n"
if filtered_output:
final_output += "\n".join(filtered_output) + "\n\n"
else:
final_output += "No significant clinical findings identified.\n\n"
final_output += (
"## Conclusion\n\n"
"The analysis reveals significant gaps in patient care, including potential missed cardiovascular diagnoses "
"due to inconsistent follow-up on chest discomfort and elevated vitals. Low medication adherence is a recurring "
"issue, likely impacting treatment efficacy. Incomplete assessments, particularly missing vital signs, hinder "
"comprehensive care. Urgent follow-up is recommended for patients with chest discomfort and elevated vitals to "
"prevent adverse outcomes."
)
# Save report
async with aiofiles.open(report_path, "w") as f:
await f.write(final_output)
logger.info(f"Report saved to {report_path}")
yield final_output, report_path
except Exception as e:
logger.error(f"Error generating report: {str(e)}")
yield f"Error: {str(e)}", None
def create_ui(agent):
"""Create Gradio interface for clinical oversight analysis."""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Clinical Oversight Assistant",
css="""
.gradio-container {max-width: 1000px; margin: auto; font-family: Arial, sans-serif;}
#chatbot {border: 1px solid #e5e7eb; border-radius: 8px; padding: 10px; background: #f9fafb;}
.markdown {white-space: pre-wrap;}
"""
) as demo:
gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
file_count="single",
interactive=True
)
msg_input = gr.Textbox(
label="Additional Instructions",
placeholder="Add any specific analysis requests...",
lines=3
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
send_btn = gr.Button("Analyze", variant="primary")
# Right column - Outputs
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True,
elem_id="chatbot"
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Select your patient records Excel file
2. **Add Instructions** (Optional): Provide any specific analysis requests
3. **Click Analyze**: The system will process all patient records and generate a comprehensive report
4. **Review Results**: Analysis appears in the chat window
5. **Download Report**: Get a full markdown report of all findings
### Excel File Requirements
Your Excel file must contain these columns:
- Booking Number
- Form Name
- Form Item
- Item Response
- Interview Date
- Interviewer
- Description
### Analysis Includes
- Missed diagnoses
- Medication conflicts
- Incomplete assessments
- Urgent follow-up needs
""")
def format_message(role: str, content: str) -> Tuple[str, str]:
"""Format messages for the chatbot in (user, bot) format."""
if role == "user":
return (content, None)
else:
return (None, content)
async def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
"""Analyze uploaded file and generate comprehensive report."""
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Initialize chat history
new_history = chat_history + [format_message("user", message)]
new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
yield new_history, None
# Load and clean data
df = await load_and_clean_data(file.name)
file_hash_value = file_hash(file.name)
# Generate report
async for output, report_path in generate_report(agent, df, file_hash_value):
if output:
new_history[-1] = format_message("assistant", output)
yield new_history, report_path
else:
yield new_history, report_path
except Exception as e:
logger.error(f"Analysis failed: {str(e)}")
new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
yield new_history, None
raise gr.Error(f"Analysis failed: {str(e)}")
def clear_chat():
"""Clear chat history and download output."""
return [], None
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
api_name="analyze",
queue=True
)
msg_input.submit(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
queue=True
)
clear_btn.click(
clear_chat,
inputs=[],
outputs=[chatbot, download_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
logger.error(f"Failed to launch application: {str(e)}")
print(f"Failed to launch application: {str(e)}")
sys.exit(1) |