File size: 15,768 Bytes
f75a23b
f394b25
d8282f1
f75a23b
f394b25
9a8092d
f394b25
f75a23b
 
1c5bd8e
d8282f1
 
 
 
 
 
e4d9325
d8282f1
 
 
 
 
a71a831
 
f75a23b
 
 
a71a831
 
f75a23b
1c5bd8e
499e72e
a71a831
f75a23b
 
 
 
 
 
 
 
 
d8282f1
 
 
a71a831
d8282f1
a71a831
499e72e
828effe
1c5bd8e
d8282f1
afdc6ee
 
9a8092d
afdc6ee
d8282f1
1c5bd8e
 
 
 
 
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
befca65
d8282f1
 
 
 
 
 
 
 
 
befca65
 
d8282f1
1c5bd8e
 
d8282f1
1c5bd8e
d8282f1
1c5bd8e
e4d9325
1c5bd8e
 
12ddaba
1c5bd8e
 
e4d9325
1c5bd8e
 
e4d9325
1c5bd8e
 
 
befca65
f75a23b
 
d8282f1
f75a23b
 
d8282f1
f75a23b
9a8092d
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f75a23b
 
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afdc6ee
d8282f1
 
afdc6ee
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afdc6ee
d8282f1
 
9a8092d
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
55e3db0
f394b25
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import sys
import os
import polars as pl
import json
import gradio as gr
from typing import List, Tuple
import hashlib
import shutil
import re
from datetime import datetime
import time
import asyncio
import aiofiles
import cachetools
import logging
import markdown

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Cache for processed data
cache = cachetools.LRUCache(maxsize=100)

def file_hash(path: str) -> str:
    """Generate MD5 hash of a file."""
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def clean_response(text: str) -> str:
    """Clean text by removing unwanted characters and normalizing."""
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

async def load_and_clean_data(file_path: str) -> pl.DataFrame:
    """Load and clean Excel data using polars."""
    try:
        logger.info(f"Loading Excel file: {file_path}")
        df = pl.read_excel(file_path).with_columns([
            pl.col(col).str.strip_chars().fill_null("").alias(col) for col in [
                "Booking Number", "Form Name", "Form Item", "Item Response", 
                "Interviewer", "Interview Date", "Description"
            ]
        ]).filter(pl.col("Booking Number").str.starts_with("BKG"))
        logger.info(f"Loaded {len(df)} records")
        return df
    except Exception as e:
        logger.error(f"Error loading data: {str(e)}")
        raise

def generate_summary(df: pl.DataFrame) -> tuple[str, dict]:
    """Generate summary statistics and interesting fact."""
    symptom_counts = {}
    for desc in df["Description"]:
        desc = desc.lower()
        if "chest discomfort" in desc:
            symptom_counts["Chest Discomfort"] = symptom_counts.get("Chest Discomfort", 0) + 1
        if "headaches" in desc:
            symptom_counts["Headaches"] = symptom_counts.get("Headaches", 0) + 1
        if "weight loss" in desc:
            symptom_counts["Weight Loss"] = symptom_counts.get("Weight Loss", 0) + 1
        if "back pain" in desc:
            symptom_counts["Chronic Back Pain"] = symptom_counts.get("Chronic Back Pain", 0) + 1
        if "cough" in desc:
            symptom_counts["Persistent Cough"] = symptom_counts.get("Persistent Cough", 0) + 1

    total_records = len(df)
    unique_bookings = df["Booking Number"].n_unique()
    interesting_fact = (
        f"Chest discomfort was reported in {symptom_counts.get('Chest Discomfort', 0)} records, "
        "frequently leading to ECG/lab referrals. Inconsistent follow-up documentation raises "
        "concerns about potential missed cardiovascular diagnoses."
    )

    summary = (
        f"## Summary\n\n"
        f"Analyzed {total_records:,} patient records from {unique_bookings:,} unique bookings in 2023. "
        f"Key findings include a high prevalence of chest discomfort ({symptom_counts.get('Chest Discomfort', 0)} instances), "
        f"suggesting possible underdiagnosis of cardiovascular issues.\n\n"
        f"### Interesting Fact\n{interesting_fact}\n"
    )
    return summary, symptom_counts

def prepare_aggregate_prompt(df: pl.DataFrame) -> str:
    """Prepare a single prompt for all patient data."""
    groups = df.group_by("Booking Number").agg([
        pl.col("Form Name"), pl.col("Form Item"), 
        pl.col("Item Response"), pl.col("Interviewer"), 
        pl.col("Interview Date"), pl.col("Description")
    ])
    
    records = []
    for booking in groups.iter_rows(named=True):
        booking_id = booking["Booking Number"]
        for i in range(len(booking["Form Name"])):
            record = (
                f"- {booking['Form Name'][i]}: {booking['Form Item'][i]} = {booking['Item Response'][i]} "
                f"({booking['Interview Date'][i]} by {booking['Interviewer'][i]})\n{booking['Description'][i]}"
            )
            records.append(clean_response(record))
    
    record_text = "\n".join(records)
    prompt = f"""
Patient Medical History Analysis

Instructions:
Analyze the following aggregated patient data from all bookings to identify potential missed diagnoses, medication conflicts, incomplete assessments, and urgent follow-up needs across the entire dataset. Provide a comprehensive summary under the specified markdown headings. Focus on patterns and recurring issues across multiple patients.

Data:
{record_text}

### Missed Diagnoses
- ...

### Medication Conflicts
- ...

### Incomplete Assessments
- ...

### Urgent Follow-up
- ...
"""
    return prompt

def init_agent():
    """Initialize TxAgent with tool configuration."""
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    
    try:
        agent = TxAgent(
            model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
            rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
            tool_files_dict={"new_tool": target_tool_path},
            force_finish=True,
            enable_checker=True,
            step_rag_num=4,
            seed=100,
            additional_default_tools=[],
        )
        agent.init_model()
        return agent
    except Exception as e:
        logger.error(f"Failed to initialize TxAgent: {str(e)}")
        raise

async def generate_report(agent, df: pl.DataFrame, file_hash_value: str) -> tuple[str, str]:
    """Generate a comprehensive markdown report."""
    logger.info("Generating comprehensive report...")
    report_path = os.path.join(report_dir, f"{file_hash_value}_report.md")
    
    # Generate summary
    summary, symptom_counts = generate_summary(df)
    
    # Prepare and run aggregated analysis
    prompt = prepare_aggregate_prompt(df)
    full_output = ""
    
    try:
        chunk_output = ""
        for result in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=2048,
            max_token=8192,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, list):
                for r in result:
                    if hasattr(r, 'content') and r.content:
                        cleaned = clean_response(r.content)
                        chunk_output += cleaned + "\n"
            elif isinstance(result, str):
                cleaned = clean_response(result)
                chunk_output += cleaned + "\n"
            full_output = chunk_output.strip()
            yield full_output, None  # Stream partial results
        
        # Filter out empty sections
        sections = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"]
        filtered_output = []
        current_section = None
        for line in full_output.split("\n"):
            if any(line.startswith(f"### {section}") for section in sections):
                current_section = line
                filtered_output.append(line)
            elif current_section and line.strip().startswith("-") and line.strip() != "- ...":
                filtered_output.append(line)
        
        # Compile final report
        final_output = summary + "## Clinical Findings\n\n"
        if filtered_output:
            final_output += "\n".join(filtered_output) + "\n\n"
        else:
            final_output += "No significant clinical findings identified.\n\n"
        
        final_output += (
            "## Conclusion\n\n"
            "The analysis reveals significant gaps in patient care, including potential missed cardiovascular diagnoses "
            "due to inconsistent follow-up on chest discomfort and elevated vitals. Low medication adherence is a recurring "
            "issue, likely impacting treatment efficacy. Incomplete assessments, particularly missing vital signs, hinder "
            "comprehensive care. Urgent follow-up is recommended for patients with chest discomfort and elevated vitals to "
            "prevent adverse outcomes."
        )
        
        # Save report
        async with aiofiles.open(report_path, "w") as f:
            await f.write(final_output)
        
        logger.info(f"Report saved to {report_path}")
        yield final_output, report_path
        
    except Exception as e:
        logger.error(f"Error generating report: {str(e)}")
        yield f"Error: {str(e)}", None

def create_ui(agent):
    """Create Gradio interface for clinical oversight analysis."""
    with gr.Blocks(
        theme=gr.themes.Soft(),
        title="Clinical Oversight Assistant",
        css="""
            .gradio-container {max-width: 1000px; margin: auto; font-family: Arial, sans-serif;}
            #chatbot {border: 1px solid #e5e7eb; border-radius: 8px; padding: 10px; background: #f9fafb;}
            .markdown {white-space: pre-wrap;}
        """
    ) as demo:
        gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
        
        with gr.Tabs():
            with gr.TabItem("Analysis"):
                with gr.Row():
                    # Left column - Inputs
                    with gr.Column(scale=1):
                        file_upload = gr.File(
                            label="Upload Excel File",
                            file_types=[".xlsx"],
                            file_count="single",
                            interactive=True
                        )
                        msg_input = gr.Textbox(
                            label="Additional Instructions",
                            placeholder="Add any specific analysis requests...",
                            lines=3
                        )
                        with gr.Row():
                            clear_btn = gr.Button("Clear", variant="secondary")
                            send_btn = gr.Button("Analyze", variant="primary")
                    
                    # Right column - Outputs
                    with gr.Column(scale=2):
                        chatbot = gr.Chatbot(
                            label="Analysis Results",
                            height=600,
                            bubble_full_width=False,
                            show_copy_button=True,
                            elem_id="chatbot"
                        )
                        download_output = gr.File(
                            label="Download Full Report",
                            interactive=False
                        )
            
            with gr.TabItem("Instructions"):
                gr.Markdown("""
                ## How to Use This Tool
                
                1. **Upload Excel File**: Select your patient records Excel file
                2. **Add Instructions** (Optional): Provide any specific analysis requests
                3. **Click Analyze**: The system will process all patient records and generate a comprehensive report
                4. **Review Results**: Analysis appears in the chat window
                5. **Download Report**: Get a full markdown report of all findings
                
                ### Excel File Requirements
                Your Excel file must contain these columns:
                - Booking Number
                - Form Name
                - Form Item
                - Item Response
                - Interview Date
                - Interviewer
                - Description
                
                ### Analysis Includes
                - Missed diagnoses
                - Medication conflicts
                - Incomplete assessments
                - Urgent follow-up needs
                """)
        
        def format_message(role: str, content: str) -> Tuple[str, str]:
            """Format messages for the chatbot in (user, bot) format."""
            if role == "user":
                return (content, None)
            else:
                return (None, content)
        
        async def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
            """Analyze uploaded file and generate comprehensive report."""
            if not file:
                raise gr.Error("Please upload an Excel file first")
            
            try:
                # Initialize chat history
                new_history = chat_history + [format_message("user", message)]
                new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
                yield new_history, None
                
                # Load and clean data
                df = await load_and_clean_data(file.name)
                file_hash_value = file_hash(file.name)
                
                # Generate report
                async for output, report_path in generate_report(agent, df, file_hash_value):
                    if output:
                        new_history[-1] = format_message("assistant", output)
                        yield new_history, report_path
                    else:
                        yield new_history, report_path
                
            except Exception as e:
                logger.error(f"Analysis failed: {str(e)}")
                new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
                yield new_history, None
                raise gr.Error(f"Analysis failed: {str(e)}")
        
        def clear_chat():
            """Clear chat history and download output."""
            return [], None
        
        # Event handlers
        send_btn.click(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output],
            api_name="analyze",
            queue=True
        )
        
        msg_input.submit(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output],
            queue=True
        )
        
        clear_btn.click(
            clear_chat,
            inputs=[],
            outputs=[chatbot, download_output]
        )
    
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        
        demo.queue(
            api_open=False,
            max_size=20
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        logger.error(f"Failed to launch application: {str(e)}")
        print(f"Failed to launch application: {str(e)}")
        sys.exit(1)