File size: 9,163 Bytes
25e2c05
a6968c2
 
 
973658c
41eb6bd
a6968c2
 
 
 
 
 
3dfd69d
a6968c2
 
3dfd69d
a6968c2
 
 
 
 
1ba0100
a6968c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eb6bd
a6968c2
 
41eb6bd
 
a6968c2
2e43581
a6968c2
 
 
26668b6
41eb6bd
2e43581
 
a6968c2
3dfd69d
a6968c2
 
 
 
 
 
41eb6bd
 
 
 
2e43581
41eb6bd
 
 
 
 
 
a6968c2
41eb6bd
a6968c2
 
 
 
 
818eb65
41eb6bd
 
 
 
 
 
818eb65
a6968c2
818eb65
a6968c2
04db5d2
 
 
1ba0100
 
2e43581
04db5d2
1ba0100
f640ef8
04db5d2
 
a6968c2
818eb65
3dfd69d
818eb65
 
 
 
 
1ba0100
818eb65
 
 
 
 
 
3deb36c
41eb6bd
 
 
 
1ba0100
41eb6bd
 
1ba0100
41eb6bd
c3218a0
 
41eb6bd
 
 
 
 
96347cc
818eb65
 
 
 
41eb6bd
2e43581
 
 
 
ffd15e8
2e43581
 
ffd15e8
2e43581
 
 
 
ffd15e8
2e43581
 
a6968c2
3deb36c
41eb6bd
1ba0100
 
26668b6
2e43581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ba0100
2e43581
 
26668b6
41eb6bd
2e43581
26668b6
2e43581
41eb6bd
 
 
818eb65
1ba0100
41eb6bd
 
 
 
a6968c2
fe67870
e24be23
818eb65
 
 
 
 
 
 
 
 
96347cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import sys
import os
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import re
import psutil
import subprocess

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_all_pages(file_path: str) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages):
                page_text = page.extract_text() or ""
                text_chunks.append(page_text.strip())
        return "\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_all_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")

def clean_response(text: str) -> str:
    text = sanitize_utf8(text)
    text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
    text = re.sub(r"\['get_[^\]]+\']\n?", "", text)
    text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)
    text = re.sub(r"(?i)(to analyze|based on|will start|no (drug|clinical|information)|none).*?\n", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text).strip()
    if not re.search(r"(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", text, re.IGNORECASE):
        return ""
    return text

def init_agent():
    print("πŸ” Initializing model...")
    log_system_usage("Before Load")
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        force_finish=True,
        enable_checker=True,
        step_rag_num=1,
        seed=100,
    )
    agent.init_model()
    log_system_usage("After Load")
    print("βœ… Agent Ready")
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Report")

        def analyze(message: str, history: List[dict], files: List):
            history.append({"role": "user", "content": message})
            yield history, None

            extracted = ""
            file_hash_value = ""
            if files:
                with ThreadPoolExecutor(max_workers=6) as executor:
                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                    results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                    extracted = "\n".join(results)
                    file_hash_value = file_hash(files[0].name) if files else ""

            # Split into small chunks of 2,000 characters
            chunk_size = 2000
            chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
            combined_response = ""

            prompt_template = f"""
List doctor oversights in the medical records under these headings with brief details:

**Missed Diagnoses**: Unaddressed conditions or inconsistencies.
**Medication Conflicts**: Risky prescriptions.
**Incomplete Assessments**: Missing evaluations.
**Urgent Follow-up**: Issues needing attention.

Records:
{{chunk}}
"""

            try:
                history.append({"role": "assistant", "content": "πŸ”„ Analyzing..."})
                yield history, None

                for chunk_idx, chunk in enumerate(chunks, 1):
                    prompt = prompt_template.format(chunk=chunk)
                    chunk_response = ""
                    for output in agent.run_gradio_chat(
                        message=prompt,
                        history=[],
                        temperature=0.1,
                        max_new_tokens=256,
                        max_token=4096,
                        call_agent=False,
                        conversation=[],
                    ):
                        if output is None:
                            continue
                        if isinstance(output, list):
                            for m in output:
                                if hasattr(m, 'content') and m.content:
                                    cleaned = clean_response(m.content)
                                    if cleaned:
                                        chunk_response += cleaned + "\n"
                                        history[-1]["content"] = combined_response + chunk_response.strip()
                                        yield history, None
                        elif isinstance(output, str) and output.strip():
                            cleaned = clean_response(output)
                            if cleaned:
                                chunk_response += cleaned + "\n"
                                history[-1]["content"] = combined_response + chunk_response.strip()
                                yield history, None

                    if chunk_response:
                        combined_response += chunk_response

                if not combined_response:
                    history[-1]["content"] = "No oversights identified."
                else:
                    history[-1]["content"] = combined_response.strip()

                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                if report_path and combined_response:
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(combined_response)
                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                print("🚨 ERROR:", e)
                history[-1]["content"] = f"❌ Error: {str(e)}"
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    print("πŸš€ Launching app...")
    agent = init_agent()
    demo = create_ui(agent)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )