File size: 9,479 Bytes
1777737 3a20a5b 728def5 3a20a5b 1f0c81e dfe34bb 446fbec 841c3cb 0e7a2f6 dfe34bb 8505d49 1f0c81e 13fb959 28560cd 1f0c81e dfe34bb 28560cd 446fbec 3a20a5b 41945fe 3a20a5b 41945fe 3a20a5b ff7a915 446fbec 1f0c81e ff7a915 dfe34bb 5ff2c92 dfe34bb 28560cd 1f0c81e dfe34bb 28560cd 446fbec 28560cd 446fbec dfe34bb 446fbec 28560cd 446fbec 1f0c81e 446fbec 1f0c81e 446fbec dfe34bb 5ff2c92 dfe34bb 1f0c81e 3a20a5b 1f0c81e 3a20a5b 774fd26 edb2500 28560cd dfe34bb 4e4aafc 13fb959 4e4aafc dfe34bb 4a6ed35 7c14cc2 1f0c81e 9086c95 13fb959 dfe34bb 28560cd 5ff2c92 28560cd 15df552 28560cd c87fc4e 57d92c0 edb2500 9086c95 c87fc4e 9086c95 c87fc4e 9086c95 5ff2c92 9086c95 15df552 5ff2c92 446fbec 9086c95 1f0c81e 9086c95 5ff2c92 adec3a7 9086c95 1f0c81e 9086c95 7c14cc2 1f0c81e 9086c95 1f0c81e 9086c95 15df552 57d92c0 9086c95 88317c7 3a20a5b 57d92c0 88317c7 3a20a5b 28560cd 3ae42d2 3a20a5b 3492c23 13fb959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr
import re
from typing import List, Dict, Optional
# β
Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
"""Clean text of problematic Unicode characters"""
return text.encode('utf-8', 'ignore').decode('utf-8')
def clean_final_response(response: str) -> str:
"""Remove tool calls and other artifacts from final response"""
# Split on TOOL_CALLS if present
if '[TOOL_CALLS]' in response:
response = response.split('[TOOL_CALLS]')[0]
# Remove any remaining special tokens
response = re.sub(r'\[[A-Z_]+\]', '', response)
return response.strip()
def chunk_text(text: str, max_tokens: int = 8000) -> List[str]:
"""Split text into chunks based on token count estimate"""
words = text.split()
chunks = []
current_chunk = []
current_tokens = 0
for word in words:
# Estimate tokens (roughly 1 token per 4 characters)
word_tokens = len(word) // 4 + 1
if current_tokens + word_tokens > max_tokens and current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_tokens = word_tokens
else:
current_chunk.append(word)
current_tokens += word_tokens
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str:
"""Extract text from spreadsheet files with error handling"""
try:
if not os.path.exists(file_path):
return f"File not found: {file_path}"
if progress:
progress((index + 1) / total, desc=f"Reading spreadsheet: {os.path.basename(file_path)}")
if file_path.endswith(".csv"):
df = pd.read_csv(file_path, encoding="utf-8", errors="replace", low_memory=False)
elif file_path.endswith((".xls", ".xlsx")):
df = pd.read_excel(file_path, engine="openpyxl")
else:
return f"Unsupported spreadsheet format: {file_path}"
lines = []
for _, row in df.iterrows():
line = " | ".join(str(cell) for cell in row if pd.notna(cell))
if line:
lines.append(line)
return f"π {os.path.basename(file_path)}\n\n" + "\n".join(lines)
except Exception as e:
return f"[Error reading {os.path.basename(file_path)}]: {str(e)}"
def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str:
"""Extract text from PDF files with error handling"""
try:
if not os.path.exists(file_path):
return f"PDF not found: {file_path}"
extracted = []
with pdfplumber.open(file_path) as pdf:
num_pages = len(pdf.pages)
for i, page in enumerate(pdf.pages):
try:
text = page.extract_text() or ""
extracted.append(text.strip())
if progress:
progress((index + (i / num_pages)) / total,
desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
except Exception as e:
extracted.append(f"[Error reading page {i+1}]: {str(e)}")
return f"π {os.path.basename(file_path)}\n\n" + "\n\n".join(extracted)
except Exception as e:
return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}"
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Patient Support System") as demo:
gr.Markdown("<h1 style='text-align: center;'>π CPS: Clinical Patient Support System</h1>")
# Fix: Changed type to 'messages' to match Gradio requirements
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(
placeholder="Ask a biomedical question or just upload the files...",
show_label=False
)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
context = (
"You are an expert clinical AI assistant reviewing medical form or interview data. "
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
"Ensure the output is informative and helpful for improving patient care. "
"Do not hallucinate. Base the response only on the provided form content. "
"End with a section labeled 'π§ Final Analysis' where you summarize key findings the doctor may have missed."
)
try:
# Show processing message immediately
history.append((message, "β³ Processing your request..."))
yield history
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
total_files = len(uploaded_files)
for index, file in enumerate(uploaded_files):
if not hasattr(file, 'name'):
continue
path = file.name
try:
if path.endswith((".csv", ".xls", ".xlsx")):
extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
elif path.endswith(".pdf"):
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
else:
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
except Exception as file_error:
extracted_text += f"[Error processing {os.path.basename(path)}]: {str(file_error)}\n"
sanitized = sanitize_utf8(extracted_text.strip())
chunks = chunk_text(sanitized)
full_response = ""
for i, chunk in enumerate(chunks):
chunked_prompt = (
f"{context}\n\n--- Uploaded File Content (Chunk {i+1}/{len(chunks)}) ---\n\n{chunk}\n\n"
f"--- End of Chunk ---\n\nNow begin your analysis:"
)
generator = agent.run_gradio_chat(
message=chunked_prompt,
history=[],
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
# Collect all updates from the generator
chunk_response = ""
for update in generator:
if isinstance(update, str):
chunk_response += update
elif isinstance(update, list):
# Handle list of messages
for msg in update:
if hasattr(msg, 'content'):
chunk_response += msg.content
full_response += chunk_response + "\n\n"
# Clean up the final response
full_response = clean_final_response(full_response.strip())
# Remove the processing message and add the final response
history[-1] = (message, full_response)
yield history
except Exception as chat_error:
print(f"Chat handling error: {chat_error}")
error_msg = "An error occurred while processing your request. Please try again."
if len(history) > 0 and history[-1][1].startswith("β³"):
history[-1] = (history[-1][0], error_msg)
else:
history.append((message, error_msg))
yield history
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo |