File size: 5,674 Bytes
f75a23b
f394b25
 
f75a23b
f394b25
f75a23b
f394b25
f75a23b
 
1c5bd8e
f75a23b
e4d9325
a71a831
 
f75a23b
 
 
a71a831
 
f75a23b
1c5bd8e
499e72e
a71a831
f75a23b
 
 
 
 
 
 
 
 
a71a831
 
499e72e
828effe
1c5bd8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4d9325
1c5bd8e
 
12ddaba
1c5bd8e
 
e4d9325
1c5bd8e
 
e4d9325
1c5bd8e
 
 
 
 
f75a23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870dc53
1c5bd8e
870dc53
1c5bd8e
 
870dc53
f75a23b
 
1c5bd8e
f75a23b
1c5bd8e
f75a23b
 
1c5bd8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f75a23b
 
1c5bd8e
 
 
 
 
870dc53
 
 
a71a831
55e3db0
f394b25
f75a23b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List
import hashlib
import shutil
import re
from datetime import datetime
import time

persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def clean_response(text: str) -> str:
    text = text.encode("utf-8", "ignore").decode("utf-8")
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def parse_excel_to_prompts(file_path: str) -> List[str]:
    xl = pd.ExcelFile(file_path)
    df = xl.parse(xl.sheet_names[0], header=0).fillna("")
    groups = df.groupby("Booking Number")
    prompts = []
    for booking, group in groups:
        records = []
        for _, row in group.iterrows():
            records.append(f"- {row['Form Name']}: {row['Form Item']} = {row['Item Response']} ({row['Interview Date']} by {row['Interviewer']})\n{row['Description']}")
        record_text = "\n".join(records)
        prompt = f"""
Patient Booking Number: {booking}

Instructions:
Analyze the following patient case for missed diagnoses, medication conflicts, incomplete assessments, and any urgent follow-up needed. Summarize under the markdown headings.

Data:
{record_text}

### Missed Diagnoses
- ...

### Medication Conflicts
- ...

### Incomplete Assessments
- ...

### Urgent Follow-up
- ...
"""
        prompts.append(prompt)
    return prompts

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>\ud83e\uddfa Clinical Oversight Assistant (Excel Optimized)</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".xlsx"], file_count="single")
        msg_input = gr.Textbox(placeholder="Ask about patient history...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze(message: str, history: List[dict], file) -> tuple:
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": "⏳ Processing Excel data..."})
            yield history, None

            prompts = parse_excel_to_prompts(file.name)
            full_output = ""

            for idx, prompt in enumerate(prompts, 1):
                chunk_output = ""
                for result in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=1024,
                    max_token=4096,
                    call_agent=False,
                    conversation=[],
                ):
                    if isinstance(result, list):
                        for r in result:
                            if hasattr(r, 'content') and r.content:
                                chunk_output += clean_response(r.content) + "\n"
                    elif isinstance(result, str):
                        chunk_output += clean_response(result) + "\n"
                if chunk_output:
                    output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
                    history.append({"role": "assistant", "content": output})
                    full_output += output + "\n"
                    yield history, None

            file_hash_value = file_hash(file.name)
            report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
            with open(report_path, "w", encoding="utf-8") as f:
                f.write(full_output)
            yield history, report_path if os.path.exists(report_path) else None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    agent = init_agent()
    demo = create_ui(agent)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )