File size: 9,269 Bytes
25e2c05
a6968c2
 
 
973658c
41eb6bd
a6968c2
 
 
 
 
 
3dfd69d
a6968c2
 
3dfd69d
a6968c2
 
 
 
 
1ba0100
a6968c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eb6bd
a6968c2
 
41eb6bd
 
a6968c2
1ba0100
a6968c2
 
1ba0100
a6968c2
26668b6
41eb6bd
26668b6
1ba0100
 
 
 
 
 
 
 
 
a6968c2
3dfd69d
a6968c2
 
 
 
 
 
41eb6bd
 
 
 
 
 
 
 
 
 
 
a6968c2
41eb6bd
a6968c2
 
 
 
 
818eb65
41eb6bd
 
 
 
 
 
818eb65
a6968c2
818eb65
a6968c2
04db5d2
 
 
1ba0100
 
 
04db5d2
1ba0100
f640ef8
04db5d2
 
a6968c2
818eb65
3dfd69d
818eb65
 
 
 
 
1ba0100
818eb65
 
 
 
 
 
3deb36c
41eb6bd
 
 
 
1ba0100
41eb6bd
 
1ba0100
41eb6bd
c3218a0
 
41eb6bd
 
 
 
 
96347cc
818eb65
 
 
 
41eb6bd
1ba0100
 
ffd15e8
1ba0100
 
 
 
ffd15e8
1ba0100
 
ffd15e8
1ba0100
a6968c2
3deb36c
41eb6bd
1ba0100
 
26668b6
1ba0100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26668b6
41eb6bd
1ba0100
26668b6
1ba0100
41eb6bd
 
 
818eb65
1ba0100
41eb6bd
 
 
 
a6968c2
fe67870
e24be23
818eb65
 
 
 
 
 
 
 
 
96347cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import sys
import os
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import re
import psutil
import subprocess

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_chars: int = 6000) -> str:
    try:
        text_chunks = []
        total_chars = 0
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages):
                page_text = page.extract_text() or ""
                if i < 3 or any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    page_chunk = f"=== Page {i+1} ===\n{page_text.strip()}\n"
                    if total_chars + len(page_chunk) <= max_chars:
                        text_chunks.append(page_chunk)
                        total_chars += len(page_chunk)
                    else:
                        remaining = max_chars - total_chars
                        text_chunks.append(page_chunk[:remaining])
                        break
        return "".join(text_chunks).strip()
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")

def clean_response(text: str) -> str:
    text = sanitize_utf8(text)
    text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
    text = re.sub(r"\['get_[^\]]+\']\n?", "", text)
    text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)
    text = re.sub(r"(?i)(to analyze|based on|will start|no (drug|clinical|information)).*?\n", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text).strip()
    if not re.search(r"(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", text, re.IGNORECASE):
        return ""
    return text

def init_agent():
    print("πŸ” Initializing model...")
    log_system_usage("Before Load")
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        force_finish=True,
        enable_checker=True,
        step_rag_num=1,
        seed=100,
    )
    agent.init_model()
    log_system_usage("After Load")
    print("βœ… Agent Ready")
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Report")

        def analyze(message: str, history: List[dict], files: List):
            history.append({"role": "user", "content": message})
            yield history, None

            extracted = ""
            file_hash_value = ""
            if files:
                with ThreadPoolExecutor(max_workers=6) as executor:
                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                    results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                    extracted = "\n".join(results)
                    file_hash_value = file_hash(files[0].name) if files else ""

            prompt = f"""
Analyze the medical records and list potential doctor oversights under these headings only, with brief details:

**Missed Diagnoses**: Inconsistencies or unaddressed conditions.
**Medication Conflicts**: Contraindications or risky prescriptions.
**Incomplete Assessments**: Missing or shallow evaluations.
**Urgent Follow-up**: Issues needing immediate attention.

Records:
{extracted[:6000]}

Respond concisely.
"""

            try:
                history.append({"role": "assistant", "content": "πŸ”„ Analyzing..."})
                yield history, None

                response = ""
                for output in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.1,
                    max_new_tokens=512,
                    max_token=4096,
                    call_agent=False,
                    conversation=[],
                ):
                    if output is None:
                        continue
                    if isinstance(output, list):
                        for m in output:
                            if hasattr(m, 'content') and m.content:
                                cleaned = clean_response(m.content)
                                if cleaned:
                                    response += cleaned + "\n"
                                    history[-1]["content"] = response.strip()
                                    yield history, None
                    elif isinstance(output, str) and output.strip():
                        cleaned = clean_response(output)
                        if cleaned:
                            response += cleaned + "\n"
                            history[-1]["content"] = response.strip()
                            yield history, None

                if not response:
                    history[-1]["content"] = "No oversights identified."
                yield history, None

                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                if report_path and response:
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(response.strip())
                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                print("🚨 ERROR:", e)
                history[-1]["content"] = f"❌ Error: {str(e)}"
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    print("πŸš€ Launching app...")
    agent = init_agent()
    demo = create_ui(agent)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )